
Universit�a degli Studi di Torino

Dipartimento di Informatica

Using Arduino for Tangible Human

Computer Interaction

Fabio Varesano

Advisor: Prof. Luca Console
Co-Advisor: Prof. Marco Grangetto

Laurea Magistrale in Metodologie e Sistemi informatici

April 2011

Abstract

This thesis presents the results of a nine months internal stage at the De-

partment of Computer Science, Universit�a degli Studi di Torino.

During my stage, supervised by Prof. Luca Console, I experienced with

electronics, Arduino, micro-electromechanical sensors (accelerometers, gy-

roscopes and magnetometers), orientation sensing algorithms and 3D com-

puter graphics to develop prototypes of Human Computer Interaction de-

vices, with a a particular interest on Tangible User Interfaces.

Copyright c 2011 Fabio Varesano -http://www.varesano.net/

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Un-
ported License. To view a copy of this license, visit http://creativ ecommons.org/licenses/by-
sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Document generated on Monday 28th March, 2011.

To my family which always supported me through the University years.

I probably wouldn't be writing this thesis without their help.

ii

Contents

List of Figures ix

1 Introduction 1

1.0.1 How everything got started . 2

2 Electronic Circuits in DC 5

2.1 Basic concepts of electricity . 5

2.2 Schematic Diagrams . 6

2.3 Ohm's law . 7

2.4 Capacitors . 7

2.5 Kirchho�'s circuit laws . 8

2.6 Series And Parallel Circuits . 9

2.6.1 Series circuits . 10

2.6.2 Parallel circuits . 11

3 Arduino 13

3.1 What is Arduino? . 13

3.1.1 Why Arduino? . 14

3.1.2 What can we do with Arduino? 15

3.2 Arduino Hardware . 15

3.2.1 Arduino Shields . 16

3.2.2 Arduino Duemilanove . 17

3.2.2.1 Arduino Duemilanove internal components 17

3.2.2.2 Arduino Duemilanove connectors 19

3.2.3 Arduino Base Workshop KIT . 21

3.3 Arduino Software . 23

iii

CONTENTS

3.4 Arduino Community . 24

3.5 Critics to Arduino . 25

4 First steps with Arduino and electronic prototyping 27

4.1 Hello World! . 27

4.1.1 LED: Light-emitting diode . 28

4.1.2 Breadboard . 30

4.1.3 Circuit Schematics and Prototype 30

4.1.4 Code . 30

4.1.4.1 Blinking without using delay() 32

4.1.5 Extension . 34

4.2 digitalRead(): using pushbuttons and tilt sensors 35

4.2.1 Pushbuttons . 36

4.2.2 Tilt Sensors . 36

4.2.3 Simple example with a Pushbutton and a Tilt sensor 37

4.2.4 Reading the switch status from Arduino 38

4.2.4.1 Pull-up and Pull-down resistors 39

4.2.4.2 Debouncing a button 40

4.2.4.3 Controlling an LED in Arduino according to the status

of a switch in input . 41

4.2.4.4 Interrupts in Arduino from a switch 42

4.3 analogRead(): Reading analog values with Arduino 43

4.3.1 Voltage divider circuits and Potentiometers 44

4.3.2 Reading a potentiometer with Arduino 46

4.3.3 Thermistors and Light dependent resistors with Arduino 47

4.3.3.1 Thermistors . 48

4.3.3.2 Light dependent resistors (LDRs) 48

4.4 Driving bigger loads: Transistors and Optocouplers 49

4.4.1 Transistors . 50

4.4.1.1 Using transistors with Arduino 50

4.4.2 Optocouplers . 52

4.4.2.1 Using optocouplers with Arduino 52

4.5 Pulse Width Modulation (PWM): analog outputs with digital means . . 53

iv

CONTENTS

4.5.1 Fading an LED using PWM with Arduino analogWrite() 55

4.6 Serial communication with Arduino . 56

4.6.1 Arduino Serial programming . 57

4.6.2 Writing data to the Serial interface with Arduino: reading the

state of one button . 58

4.6.3 Reading the state of two buttons with Arduino and communicate

their state via Serial interface . 60

4.6.4 Using internal pull-up resistors 60

4.6.5 Two-way Serial communication with Arduino 63

4.7 A multisensors game controller with Arduino and Processing 64

4.7.1 Multisensors controller circuit . 64

4.7.2 Processing . 65

4.7.3 The �nal \video game" . 65

5 MEMS Sensors: accelerometers, gyroscopes and magnetometers 67

5.1 The accelerometer . 68

5.1.1 Modelization of an accelerometer: a mass on a spring 68

5.1.2 The accelerometer and gravity 69

5.1.3 MEMS accelerometers . 71

5.2 The gyroscope . 72

5.2.1 Vibrating structure gyroscope . 73

5.2.2 MEMS gyroscope . 74

5.3 The Magnetometer . 75

5.3.1 Anisotropic Magnetoresistive Sensor 75

5.4 ADXL330: an analog 3-axis accelerometer 77

5.4.1 Wrong Buying: learning by making mistakes 78

5.4.2 Electronic schematics for using the ADXL330 with Arduino . . . 80

5.4.3 Reading data from the ADXL330 81

5.5 Digital sensors . 82

5.5.1 I2C . 83

5.5.2 Arduino and I2C . 85

5.6 Low cost, do-it-yourself method for making printed circuit boards 86

5.6.1 Designing a PCB with Kicad . 87

v

CONTENTS

5.6.2 Etching a PCB . 88

5.6.3 Soldering surface mounted devices on a PCB 90

5.7 ADXL345: a digital 3-axis accelerometer 91

5.7.1 Schematics and PCB designs for a breakout board for the ADXL345 91

5.7.2 Using the ADXL345 . 92

5.8 ITG3200: a digital 3-axis gyroscope . 93

5.8.1 Schematics and PCB designs for a breakout board for the ITG3200 94

5.8.2 Using the ITG3200 . 95

5.9 HMC5843: a digital 3-axis magnetometer 95

5.9.1 Schematics and PCB designs for a breakout board for the HMC5843 96

5.9.2 Using the HMC5843 . 97

5.10 9 degrees of measurement MARG sensor array on a breadboard 97

6 Orientation Sensing 99

6.1 Tilt sensing using an accelerometer . 99

6.1.1 Single axis tilt sensing . 99

6.1.2 Tri-axis tilt sensing . 101

6.1.3 Limitations of using only an accelerometer for tilt sensing 102

6.2 Fusing accelerometer and gyroscope data for reliable tilt sensing 102

6.3 Tilt compensated digital compass . 105

6.4 Accelerometer, gyroscope and magnetometer fusion for orientation sensing107

6.4.1 Orientation from angular rate . 108

6.4.2 Algorithm inputs and outputs . 108

6.4.3 Algorithm step . 109

6.4.4 Magnetic distortion compensation 110

7 FreeIMU 111

7.1 Dorkbot PDX group PCB buying service 112

7.2 FreeIMU version 0.1 . 113

7.3 FreeIMU version 0.2 . 115

7.4 Making FreeIMU a libre hardware project 116

7.5 Competing commercial products . 119

vi

CONTENTS

8 Palla 121

8.1 Previous works . 121

8.2 Palla's schematics . 122

8.3 Building Palla . 123

8.4 Palla capabilities and possible usages . 124

9 Femtoduino 127

9.1 Schematics . 127

9.2 PCB desing . 130

9.3 A libre hardware: media coverage and commercial productions131

10 Conclusions 133

10.1 Future Works . 133

10.1.1 Orientation Sensing . 134

10.1.2 FreeIMU . 134

10.1.3 Palla and Femtoduino . 134

10.2 Acknowledgments . 135

References 137

vii

CONTENTS

viii

List of Figures

2.1 Example of a circuit schematic diagram 7

2.2 Example of Kirchho�'s current law . 9

2.3 Example of Kirchho�'s voltage law . 10

2.4 Resistors and Capacitors in series . 10

2.5 Resistors and Capacitors in parallel . 12

3.1 Some Arduino boards . 15

3.2 A somehow exaggerated example of Arduino shielding 16

3.3 Arduino Duemilanove . 17

3.4 Arduino Duemilanove Front . 18

3.5 Arduino Base Workshop KIT . 22

3.6 Arduino Programming IDE . 23

4.1 LED . 28

4.2 In series resistor with an LED . 29

4.3 Breadboard . 30

4.4 Hello World circuit prototyped . 31

4.5 Hello World circuit Extended . 34

4.6 A pushbutton and its schematic representation 36

4.7 A tilt sensor or tilt switch . 37

4.8 Simple example circuit for pushbuttons and tilt sensors 37

4.9 Wrong circuits for connecting a switch to a digital input 38

4.10 Example circuit for Pull-up and Pull-down usage 39

4.11 A bouncing button on an oscilloscope 40

ix

LIST OF FIGURES

4.12 Controlling an LED in Arduino according to the status of a switch in

input . 41

4.13 Voltage divider circuit . 45

4.14 Anatomy of a potentiometer . 45

4.15 Simple circuit for experience with a potentiometer 46

4.16 Circuit for reading a potentiometer with Arduino 47

4.17 A thermistor and an example circuit with Arduino 49

4.18 A Light dependent resistor and an example circuit with Arduino 50

4.19 Transistors . 51

4.20 Transistor circuit . 51

4.21 Inside an optocoupler . 52

4.22 4N35 Optocoupler . 53

4.23 Optocoupler circuit and Arduino . 54

4.24 Example of Pulse Width Modulation (PWM) 55

4.25 Circuit for reading the state of one button 58

4.26 Circuit for reading the state of two buttons 60

4.27 Picture of the circuit for reading the state of one button 61

4.28 Reading two buttons using the internal pullups resistors 62

4.29 Multisensors controller circuit . 65

4.30 Multisensors controller demo . 66

5.1 Magni�ed picture of a MEMS device . 68

5.2 Mass on a spring model of a single axis accelerometer 69

5.3 E�ects of gravity and external accelerations to an accelerometer 70

5.4 Detail of a typical MEMS accelerometer 72

5.5 A mechanical gyroscope . 73

5.6 Model of a vibrating structure gyroscope 74

5.7 Detail of a Surface-micromachined vibratory rate gyroscope 74

5.8 Principle of operation for Magnetoresistive Sensors 76

5.9 Magnetoresistive transducers . 76

5.10 Magnetoresistive sensing element . 77

5.11 ADXL330 . 79

5.12 Tiny wires hand soldered to an SMD chip 80

x

LIST OF FIGURES

5.13 ADXL330 and Arduino Schematics . 81

5.14 I2C . 83

5.15 Complete I2C Data Transfer . 84

5.16 Arduino connected to two 5V I2C devices 85

5.17 Screenshot of KiCad . 87

5.18 Etching a PCB using the PNP procedure 89

5.19 Reow soldering SMD devices on a PCB 90

5.20 ADXL345 breakout board schematics . 92

5.21 ADXL345 breakout board PCB . 93

5.22 ITG3200 breakout board schematics . 94

5.23 ITG3200 breakout board PCB . 95

5.24 HMC5843 breakout board schematics . 96

5.25 HMC5843 breakout board PCB . 97

5.26 Schematics of a 9 DOM MARG sensor array using the ADXL345, ITG3200

and HMC5843 breakout boards. 98

5.27 A 9 DOM MARG sensor array using the ADXL345, ITG3200 and HMC5843

breakout boards prototyped with Arduino. 98

6.1 Tilt measurement using a single axis accelerometer 100

6.2 Tilt measurement using a three axis accelerometer 101

6.3 Normal vector R and projections angles 103

6.4 A tilted compass . 106

7.1 A PCB panel from the Dorkbot PDX group order 113

7.2 FreeIMU v0.1 Schematics . 114

7.3 FreeIMU v0.1 PCB . 115

7.4 FreeIMU v0.2 Schematics . 117

7.5 FreeIMU v0.2 PCB . 118

7.6 FreeIMU v0.1 mounted on a quadcopter 118

7.7 9 Degrees of Freedom - Sensor Stick . 119

8.1 Palla's schematics . 122

8.2 Palla prototype . 124

8.3 Palla in 3D environments . 125

xi

LIST OF FIGURES

9.1 Femtoduino Schematics . 129

9.2 Femtoduino PCB design and picture . 130

xii

1

Introduction

This thesis aimes to experience with electronics, Arduino, MEMSsensors and 3D graph-

ics to prototype novel human computer interaction approaches.

As a computer scientist, I started this work with only a very limite d electronics knowl-

edge, just some memories from the high school days. In a period of 9 months, I

progressively improved my electronics knowledge till the designing of quite complex

printed circuit boards which have been used intensively in thehuman computer device

prototyping.

The Arduino prototyping platform has been used during this project. During my

university background, we had a very limited education on low level programming and

never had the possibility to program a microcontroller. During this project, I gradually

became expert in Arduino functions and programming features.

I've also experienced also with MEMS sensors, mainly accelerometers, gyroscopes and

magnetometers used for orientation sensing. I also had to study and understand pro-

gressively complex orientation sensing algorithms which fuse the data coming from the

sensors to implement robust attitude and heading sensing.

The knowledge gained in electronics, Arduino, MEMS sensors and orientation sensing

has been crucial in the prototyping of Palla, a spherical tangible user interface capable

of orientation sensing.

Finally, I developed Femtoduino, an ultra small Arduino compatible board. In this

1

1. INTRODUCTION

thesis, practical usages of Femtoduino are not reported but this device, thanks to its

very limited size and weight, really has amazing possibilities whenused in prototyping.

This thesis is outlined as follows:

Chapter 1 a simple introduction to the thesis

Chapter 2 o�ers an introduction to electronics useful for the reader who never had

an education on it

Chapter 3 describes the Arduino electronics prototyping platform

Chapter 4 provides a description of what have been my �rst steps in using Arduino,

both from an electronic and programming point of view

Chapter 5 introduces MEMS accelerometers, gyroscopes and magnetometers and the

sensors used

Chapter 6 threats the problem of orientation sensing from a mathematical point of

view

Chapter 7 describes FreeIMU, a 9 degrees of measurement IMU developed during

this thesis

Chapter 8 describes Palla, one of the prototypes of tangible user interfaces developed

Chapter 9 introduces Femtoduino, an ultra small Arduino compatible board devel-

oped during this thesis for usage in size constrained Arduino prototyping

Chapter 10 gives my personal conclusion on this thesis.

1.0.1 How everything got started

What you will read in this thesis started back in May 2010. I had just �nish ed my

last exam for the Master of Science and I was visiting professors asking what kind of

projects were they involved with and if they could follow me as project supervisors.

I have to say that most of my last exams were pretty hard. I'm usually quite good in

both theoretical and practical exams but between them I do prefer thepractical ones as

I enjoy getting my hand dirty with programming when this involves complex problems.

2

Unfortunately tough, almost all of my last exams were theoretical so that I �n ished

the last one almost exhausted from how much complex computer science theories my

somehow limited brain had to store.

So, when I started visiting professors I was quite terri�ed by the fact that most of the

projects they were proposing were all on the theoretical side of computer science. I

rally like math, theorems, demonstrations and so on but I wanted something di�erent

for my �nal project. I wanted to get my hand dirty .

When I �rst met Professor Luca Console, he explained to me what were his current

research projects (that was the �rst time I met him, never had him as teacher in my

University background): some of them were pretty cool projects but nothing really

caught my interests until he said something like: \Oh.. yeah.. I forgot. We also bought

this thing", showing me something resembling a little PC motherboard, \It's called

Arduino: it's an electronics prototyping platform. Lot of people are using it to do cool

things all around the world and we would like to start exploring its possibilities. But

that would require you to get some knowledge of electronics and you will probably have

to get your hands dirty with wires, buttons, led, motors and stu� like that.. You will

also probably have to solder" Bingo!

This was exactly what I wanted for my �nal project and thesis. He then gave me an

Arduino board, an Arduino starter kit and I was ready to go.

Well, I have to say that the following months have been pretty hard but really sat-

isfactory. I had to learn lot of stu� for which I never received a formal education: I

messed with electronics, Arduino, soldering irons, chemicals and lot of things more.

But, writing this at the end of this path, it's been really satisfact ory and in the end it

worth it.

3

1. INTRODUCTION

4

2

Electronic Circuits in DC

The following chapter introduces some basic electronics conceptsand theories that will

be used deeply in the next chapters. The reader who never had an electronics education

or if such education happened a long time ago can use the following pages as afast and

easycheat sheetuseful for the next chapters.

For a more deep coverage of the concepts introduced below, (27) is a goodquality and

libre book on these topics.

2.1 Basic concepts of electricity

Electricity is the ow of electrons in a conductor. It can be characterized by four

quantities: voltage, current, resistance and power.

The voltage refers to the level of energy electrons have relative to some reference point

(often called ground in a circuit). The higher the voltage, the more energy electrons

have to do work as they travel through the circuit. In general, if two points are at a

di�erent voltage relative to each other, electricity will ow from on e to the other if they

are connected by something that conducts electricity. Voltage is usually represented by

the letter E or V. The basic unit of measure is volts (V).

The current is an expression of how much charge is traveling through the conductor

5

2. ELECTRONIC CIRCUITS IN DC

per second. The unit of measurement for current is the Ampere (amp, A), de�ned as

1A = 1
C
s

(2.1)

meaning that for every Ampere, there is a Coulomb (6:25 � 1018 electrons) of charges

moving past a point every second. Voltage and current are separate things: you can

have a very small current at a very high voltage, a huge current at a veryhigh voltage.

Resistance is an expression of the degree to which electron ow willbe impeded through

a conductor. The unit is the Ohm (
). In simple circuits resistan ce determines the

relation between voltage and current. At the extremes, a short pieceof wire will have

a resistance of nearly zero Ohms, while an air gap (for example in an open switch) has

very large resistance (millions of Ohms). Intuitively a couple of relationships will hold:

in a conductor, a voltage di�erence between the two ends will cause acurrent to ow.

How much current will be determined by how much resistance the conductor o�ers.

If there's less resistance more current will ow. In fact, given apower source of high

enough capacity, if you half the resistance, you will double the current. Conversely, if

you double the resistance, you will half the current.

The �nal quantity is power. The unit of power is the Watt. It's an exp ression of the

overall energy consumed by a component. It is worked out by multiplying the voltage

and the current together: P = V I (29, 61).

2.2 Schematic Diagrams

A schematic diagram shows how each component in a circuit connects with another.

It is a simple and easy to read outline of the circuit. Each type of component has a

unique symbol and a name. All relevant values and component speci�c information are

usually included.

Figure 2.1 is an example of a schematic diagram. It has 3 components: a battery (B1

- 2 horizontal lines) an LED (D1 - the triangle in the circle) and a resistor (R1 - the

wavy lines).

6

2.3 Ohm's law

Figure 2.1: Example of a circuit schematic diagram

2.3 Ohm's law

Ohm's law is one of the most important concepts in electronics. Ohm'slaw states that

the current through a conductor between two points is directly proportional to the

potential di�erence or voltage across the two points, and inversely proportional to the

resistance between them (74).

The mathematical equation that describes this relationship is:

V = IR (2.2)

This expression can be rearranged algebraically as follows:

I =
V
R

R =
V
I

(2.3)

2.4 Capacitors

A capacitor consists of two conductors separated by a non-conductive region called

the dielectric medium though it may be a vacuum or a semiconductor depletion region

chemically identical to the conductors. A capacitor is assumed to be self-contained and

isolated, with no net electric charge and no inuence from any external electric �eld.

The conductors thus hold equal and opposite charges on their facing surfaces,[9] and

the dielectric develops an electric �eld. In SI units, a capacitance of one farad means

that one coulomb of charge on each conductor causes a voltage of one volt across the

device (66).

7

2. ELECTRONIC CIRCUITS IN DC

The capacitor is a reasonably general model for electric �elds within electric circuits.

An ideal capacitor is wholly characterized by a constant capacitance C, de�ned as the

ratio of charge � Q on each conductor to the voltage V between them:

C =
Q
V

(2.4)

Work must be done by an external inuence to "move" charge between theconductors

in a capacitor. When the external inuence is removed the charge separation persists

in the electric �eld and energy is stored to be released when the charge is allowed to

return to its equilibrium position. The work done in establishing the electric �eld, and

hence the amount of energy stored, is given by:

W =
Z Q

q=0
Vdq =

Z Q

q=0

q
C

dq =
1
2

Q2

C
=

1
2

CV 2 =
1
2

V Q (2.5)

The current i (t) through any component in an electric circuit is de�ned as the rate

of ow of a charge q(t) passing through it, but actual charges, electrons, cannot pass

through the dielectric layer of a capacitor, rather an electron accumulates on the nega-

tive plate for each one that leaves the positive plate, resulting in anelectron depletion

and consequent positive charge on one electrode that is equal and oppositeto the ac-

cumulated negative charge on the other. Thus the charge on the electrodes is equal to

the integral of the current as well as proportional to the voltage as discussed above.

As with any antiderivative, a constant of integration is added to represent the initial

voltage v(t0). This is the integral form of the capacitor equation,

v(t) =
q(t)
C

=
1
C

Z t

t0

i (�)d� + v(t0) (2.6)

Taking the derivative of this, and multiplying by C, yields the de rivative form,

i (t) =
dq(t)

dt
= C

dv(t)
dt

(2.7)

2.5 Kirchho� 's circuit laws

Kirchho�'s circuit laws are two equalities that deal with the conse rvation of charge

and energy in electrical circuits, and were �rst described in 1845 byGustav Kirchho�.

8

2.6 Series And Parallel Circuits

Widely used in electrical engineering, they are also called Kirchho�'s rules or simply

Kirchho�'s laws (69).

Kirchho� 's current law states that at any node (junction) in an electrical circuit,

the sum of currents owing into that node is equal to the sum of currents owing out

of that node (�gure 2.2).

Recalling that current is a signed (positive or negative) quantity reecting direction

towards or away from a node, this principle can be stated as:

nX

k=1

I k = 0 (2.8)

Figure 2.2: Example of Kirchho� 's current law - The current entering any junction
is equal to the current leaving that junction. i 1 + i 4 = i 2 + i 3. Picture from (69)

Kirchho� 's voltage law states that the directed sum of the electrical potential dif-

ferences (voltage) around any closed circuit is zero (�gure 2.3). It can be stated as:

nX

k=1

Vk = 0 (2.9)

2.6 Series And Parallel Circuits

Components of an electrical circuit or electronic circuit can be connected in many

di�erent ways. The two simplest of these are called series and parallel and occur very

frequently. Components connected in series are connected along a single path, so the

9

2. ELECTRONIC CIRCUITS IN DC

Figure 2.3: Example of Kirchho� 's voltage law - The sum of all the voltages around
the loop is equal to zero.v1 + v2 + v3 � v4 = 0. Picture from (69)

same current ows through all of the components. Components connected in parallel

are connected so the same voltage is applied to each component.

A circuit composed solely of components connected in series is knownas a series circuit;

likewise, one connected completely in parallel is known as a parallelcircuit.

In a series circuit, the current through each of the components is the same, and the

voltage across the components is the sum of the voltages across each component.In a

parallel circuit, the voltage across each of the components is the same, andthe total

current is the sum of the currents through each component (76).

2.6.1 Series circuits

The total resistance of resistors in series is equal to the sum of their individual resis-

tances:

Rtotal = R1 + R2 + � � � + Rn (2.10)

Figure 2.4: Resistors and Capacitors in series - Picture from (76)

10

2.6 Series And Parallel Circuits

The total capacitance of capacitors in series is equal to the reciprocal of the sum of

the reciprocals of their individual capacitances:

1
Ctotal

=
1

C1
+

1
C2

+ � � � +
1

Cn
(2.11)

2.6.2 Parallel circuits

The current in each individual resistor is found by Ohm's law. Factoring out the

voltage gives :

I total = V
�

1
R1

+
1

R2
+ � � � +

1
Rn

�
(2.12)

To �nd the total resistance of all components, add the reciprocals of theresistancesRi

of each component and take the reciprocal of the sum. Total resistance will always be

less than the value of the smallest resistance:

1
Rtotal

=
1

R1
+

1
R2

+ � � � +
1

Rn
(2.13)

For only two resistors, the unreciprocated expression is reasonablysimple:

Rtotal =
R1R2

R1 + R2
(2.14)

For N equal resistors in parallel, the reciprocal sum expression simpli�es to:

1
Rtotal

=
1
R

� N () Rtotal =
R
N

(2.15)

To �nd the current in a component with resistance Ri , use Ohm's law again:

I i =
V
Ri

(2.16)

The components divide the current according to their reciprocal resistances, so, in the

case of two resistors,
I 1

I 2
=

R2

R1
(2.17)

The total capacitance of capacitors in parallel is equal to the sum of their individual

capacitances:

Ctotal = C1 + C2 + � � � + Cn (2.18)

11

2. ELECTRONIC CIRCUITS IN DC

Figure 2.5: Resistors and Capacitors in parallel - Picture from (76)

12

3

Arduino

This chapter introduce the reader to Arduino, the electronics prototyping platform

which has been used during the developments described in this thesis.

3.1 What is Arduino?

Arduino, according to Massimo Banzi, one of its creators, isan open source physical

computing platform based on a simple input/output (I/O) board and a development

environment that implements the Processing language(2, Chapter 1).

Personally, I do embrace Richard Stallman's and Free Software Foundationposition

(54) on how to name software which respects the user's freedoms to run, study, change

and distribute the original and user modi�ed software program (58). So I usually prefer

to refer to such software, instead of using the misleadingOpen Source Softwarenaming,

with the term Libre Software or Free Softwareso that the reader can clearly understand

that the importance is given to the freedoms, not only to the access of the source code.

Given the considerations made for the software and porting them into the hardware

world, I'd rather prefer using the term Libre Hardware rather than Open Source Hard-

ware so that it's clear that we are more concerned about the freedoms given to the user

by using Libre Hardware rather than the open access to the hardware designs.

I'd also would like to note the fact that most of the success of Arduino isdue to a

13

3. ARDUINO

thrilling community of developers, hackers, hobbyists which contribute code, documen-

tations, guides on the arduino.cc and other websites.

So, in my opinion, a better de�nition of Arduino would be: a libre hardware physical

computing platform based on a simple input/output (I/O) board, a development en-

vironment that implements the Processing language and a community of users which

share their e�orts and knowledge in their Arduino based projects.

3.1.1 Why Arduino?

There are many hardware prototyping platforms available but Arduino is a good choice

as:

� It is a libre hardware and software project, so both software and hardwareare

extremely accessible and very exible and they can easily be customized and

extended

� It is exible, o�ers various digital and analog inputs, SPI, I 2C, a serial interface

and digital and PWM outputs

� It is easy to use, it connects to a computer via USB and communicates using the

standard serial protocol, runs in standalone mode and as an interface connected

to PC/Macintosh computers

� It is inexpensive, less than 30 euro per board and comes with free development

environment

� It is backed up by a growing on-line community, lots of source code is already

available and ready to be used (77).

I should also note that most of the developers of Arduino are based in Ivrea,just 40

minutes from Torino where we are located: contacting, networking and collaborate with

them in the future should be pretty easy.

14

3.2 Arduino Hardware

3.1.2 What can we do with Arduino?

Arduino is a great tool for developing interactive objects, taking inputs from a variety

of switches or sensors and controlling a variety of lights, motors and otheroutputs.

Arduino projects can be stand-alone or they can be connected to a computer using

USB. The Arduino will be seen by the computer as a standard serial interface (do you

remember the COM1 on Windows?). There are serial communication APIson most

programming languages so interfacing Arduino with a software program running on the

computer is pretty straightforward.

3.2 Arduino Hardware

The Arduino board is a microcontroller board, which is a small circuit (the board) that

contains a whole computer on a small chip (the microcontroller). There are di�erent

versions of the Arduino board: they are di�erent in components, aim and size, etc.

Some examples of Arduino boards are: Arduino Duemilanove/UNO, Arduino Mega,

Arduino Nano, Arduino Mini. Arduino schematics are distribute using an open license

so anyone is free to build his own Arduino compatible board. The Arduino name is a

registered trademark so it's not possible to call a cloned board Arduino:that's why it's

very common to �nd references on *duino boards like Seeeduino, FreeDuino, Japanino,

Zigduino, iDuino, etc.

Figure 3.1: Some Arduino boards - From top left to bottom right: Lylipad, Mini,
Nano (two), Pro, Duemilanove, Mega

15

3. ARDUINO

3.2.1 Arduino Shields

Arduino boards functionalities can be extended by using shields, adhoc designed PCBs

having the same pin layout of Arduino, which can be stacked above of it adding ad-

ditional functionalities. Figure 3.2 shows a quite extreme exampleof Arduino shield

usage.

Figure 3.2: A somehow exaggerated example of Arduino shielding - Arduino it's
placed on the bottom and the di�erent shields are stacked above of it. Picture by John
Boxall CC-BY-NC-SA 3.0

There is a huge amount of shields available, each one of them especially designed for

one application. Some are being developed by the Arduino team while mostof them

have been developed by third party companies or individuals. Thereare shields for

Motor controlling, Ethernet communication, MP3 playing, Analog video out put, LCD

displays, etc.. The idea is that using a shield is possible to adda speci�c feature to

Arduino without the hassle of developing an ad hoc circuit or PCB trying to implement

such feature. Moreover, some shields comes with easy to use libraries which allows fast

and straightforward application development.

16

3.2 Arduino Hardware

3.2.2 Arduino Duemilanove

My university provided me with an Arduino Duemilanove board which is, according to

the Arduino developers, "the simplest one to use and the best one for learning on" (2,

page 20).

Figure 3.3: Arduino Duemilanove - Front and back view of the Arduino Duemilanove

3.2.2.1 Arduino Duemilanove internal components

Let's have a look at what's inside an Arduino Duemilanove. In �gure 3.4 the most

important internal components of the board are annotated and they will be described

below.

1. FTDI chip. This is the component which enable the Arduino to communicate

with the computer through USB. Arduino microcontroller is capable only of Serial

communication. The FTDI chip converts the Serial signals to USB and vice versa.

It also has an internal voltage regulator which converts the 5 V power coming

from the USB to 3.3 V

2. Status LED. It is connected to pin 13 with an 1K
 resistor. Every time a voltage

is applied by the microcontroller to pin 13 the LED will light.

3. Serial TX and RX LEDs. They serves as indicators of a communication withthe

PC or another serial device (though digital pins 0 and 1).

17

3. ARDUINO

Figure 3.4: Arduino Duemilanove Front - Front view of the Duemilanove with the
main components annotated

4. 16 MHz crystal. This is the component which acts as clock source to themicro-

controller. Basically it generates an On-O� signal which the microcontroller uses

to change its state.

5. Reset button. Once pressed, the microcontroller will reset.

6. Power LED (PWR) which will be on when the Arduino is connected to any power

source indicating that the microcontroller is running.

7. This is the microcontroller, the heart of Arduino. The Duemilanove use the At-

mel ATMEGA 328p, an 8-bit AVR RISC-based microcontroller which combines

32 KB ISP ash memory with read-while-write capabilities, 1 KB EEPR OM,

2 KB SRAM, 23 general purpose I/O lines, 32 general purpose working regis-

ters, three exible timer/counters with compare modes, internal and external

interrupts, serial programmable USART, a byte-oriented 2-wire serial interface,

SPI serial port, a 6-channel 10-bit A/D converter capable of running up to 200

KHz, programmable watchdog timer with internal oscillator, and �ve softwar e

selectable power saving modes. The ATMEGA 328p operates between 2.7-5.5

volts.

18

3.2 Arduino Hardware

8. Various components: capacitors, diodes and voltage regulators. They are used to

stabilize the power source, convert it to the correct voltage neededby the Arduino

and prevent damages from shorts.

3.2.2.2 Arduino Duemilanove connectors

A key aspect of the Arduino board is the amount of connectors available. These are

the components which permit wiring the Arduino boards to other components (sensors,

resistors, buttons, etc..) so that it can interact with them: reading, writing, moving,

etc.

As you can see from �gure 3.4 above, an Arduino 2009 board has the following connec-

tors (listed clockwise starting from the top left):

AREF: Analog Reference Pin The voltage at this pin determines the voltage at

which the analog to digital converters (ADC's) will report the decimal value

1023, which is their highest level output. This means that using this pin you'll

be able to change the maximum value readable by the Analog In pins: this isa

way to change the scale of the analog in pins.

The AREF pin is, by default, connected to the AVCC voltage of around 5 volts

(unless you are running your Arduino at a lower voltage).

GND: Digital Ground Used as Ground for Digital inputs/outputs.

DIGITAL 0-13: Digital Pins Used for digital I/O.

TX/RX Pins 0-1: Serial In/Out This pins can be used for digital I/O just

like DIGITAL pins 2-13 but they can't be used if Serial communication is

used. If your project use Serial communication you might want to use those

for Serial communication instead of using the USB to serial interface. This

can came handy while using the serial interface to interact with a nonPC

device (eg another Arduino or a Robot Controller)

External Interrupts Pins: 2-3 This pins can be con�gured to trigger an in-

terrupt on di�erent input conditions.

19

3. ARDUINO

PWM: 3, 5, 6, 9, 10, 11 Provide 8-bit PWM output with the analogWrite()

function (46).

LED: 13 There is a built-in LED connected to digital pin 13. When the pin is

HIGH value, the LED is on, when the pin is LOW, it's o�.

ICSP: In-circuit Serial Programmer Arduino comes with a bootloader which en-

able program uploading through the USB to serial interface. Advanced userscan

also directly upload programs to the Arduino board using an external program-

mer. This is done using the ICSP header. This way, it's possible to program

Arduino without the need of the bootloader thus saving about 2 KB of program

memory.

ANALOG IN 0-5: Analog input pins Used to read from an analog source (eg po-

tentiometer, photo resistor or temperature sensor).

POWER Pins Used to get or provide power to the Arduino board

Vin when using an External Power Supply (see External Power Supply In), this

provide the same voltage which is arriving from the power supply. It's also

possible to provide voltage to the board trough this pin.

Gnd (2 Pins) Used as ground pins. Actually, while searching for the di�erences

between digital ground and the other 2 Ground pins (See Power below),I

found on the Arduino board schematics that all 3 ground pins on the Arduino

board are actually connected together thus the digital ground pin and the 2

ground pins under the power section are actually just the same.

5V This is used to get 5V power from the board. This is the same voltage that

powers the microcontroller. This can came either from Vin (External Power

Supply In) or from the USB.

3V3 A 3.3 V power supply which is generated from the FTDI chip. The max-

imum current draw is 50mA. General consensus is to avoid using this pin

power source or using it in controlled situations as shorts or a too high

current drain may cause problems to the FTDI chip.

20

3.2 Arduino Hardware

RESET By bringing this line LOW it's possible to reset the board: there is also a

button for doing so on the board but, as additional shields might make the button

unreachable, this can be used for resetting the board.

External Power Supply In Used to connect an external power supply to Arduino.

A 2.1 mm center-positive plug connected to a battery or an AC-to-DC adapter.

The current range can be 6 to 20 volts but, in order to prevent overheating and

stability problems, the recommended range is 7 to 12 volts.

USB Used for uploading sketches (Arduino binary programs) to the board and for

serial communication between the board and the computer. Arduino can be

powered from the USB port.

3.2.3 Arduino Base Workshop KIT

The Arduino Board itself is pretty useless unless we plug it to other electrical com-

ponents. Usually, coupled with an Arduino board, shops also sell Arduinokits which

contain lot of useful components for developing Arduino based circuits.

My University provided me with an Arduino Base Workshop KIT which is displayed

in �gure 3.5.

The KIT is composed by the following components:

1. 1 x Arduino Duemilanove Board

2. 1 x USB cable

3. 1 x Straight single line pinhead connectors 2,54 40x1

4. 5 x 10K
 Resistors 1/4W (brown, black, orange, gold)

5. 5 2.2K
 Resistor 1/4 W (red, red, red, gold)

6. 10 x 220
 Resistors 1/4W (red, red, brown, gold)

7. 5 x 330K
 Resistors 1/4W (orange, orange, yellow, gold)

8. 5 x 100nF capacitor polyester

21

3. ARDUINO

Figure 3.5: Arduino Base Workshop KIT - Components of the kit are annotated
with the numbers from the list below.

9. 5 x 10nF capacitor polyester

10. 3 x 100uF electrolytic capacitor 25Vdc

11. 1 x 4,7K
 Thermistor

12. 1 x 10..40K
 LDR VT90N2

13. 3 x 5mm RED LED

14. 1 x 5mm GREEN LED

15. 1 x 5mm YELLOW LED

16. 1 x 10K
 linear potentiometer, PCB terminals

17. 2 x BC547 Transistor in TO92 Package

18. 1 x Piezo buzzer

19. 5 x PCB Pushbutton, 12x12mm size

20. 2 x 4N35 Optocoupler DIL-6 package

22

3.3 Arduino Software

21. 1 x Set of 70 breadboard jumper wires

22. 1 x Breadboard, 840 tie points

23. 2 x Tilt sensor

24. 1 x Diode 1n4007

25. 1 x MOS Irf540

A more detailed description of these components with examples of usageswill be done

in the next chapter.

3.3 Arduino Software

The other component of the Arduino platform is the Arduino IDE. This con tains all

the software which will run a computer in order to program and communicate with an

Arduino board.

Figure 3.6: Arduino Programming IDE

23

3. ARDUINO

The Arduino IDE contains an editor which we can use to write sketches(that's the name

of Arduino programs) in a simple programming language modeled after the Processing

language (45).

Using the IDE, the program we wrote is converted to a C program and then compiled

using avr-gcc, a free, libre and open source compiler based on the GnuC Compiler (gcc)

especially designed for AVR microcontrollers. This process produce binary code which

the microcontroller on the Arduino board will be able to understand and execute.

The binary code it's then uploaded to the Arduino microcontroller t hrough the USB

connection. This is done using the program avrdude which implements the communi-

cation protocol used to store programs into the Arduino program memory.

3.4 Arduino Community

Like many other free software and hardware projects, what makes Arduino great is

the community around it. The number of users which everyday collaborate and share

through the arduino.cc main website (46) is huge.

The arduino website contains a publicly editable Wiki, called the Playground, and a

forum where people can ask for help on their projects or discuss about anything related

to Arduino and electronics prototyping.

Arduino users are mostly hobbyists but Arduino it's also popular among students and

researchers. It's not uncommon to see high quality contents on the forum and in the

Wiki.

The fact that there are so many people working on Arduino has multiple advantages:

� access to ready to use Arduino based libraries for using many hardware and

devices (eg: motors, steppers, sensors, network interfaces etc..)

� huge knowledge shared by other people

� possibility to easily ask for help.

24

3.5 Critics to Arduino

3.5 Critics to Arduino

The Arduino platform has been criticized on some aspects and I think itworth noting

what those critics are for the sake of transparency.

One of the most common critics is about the Arduino PCB design. As there is an

additional 0.06\ spacing between the digital pin connectors, it is not possible to connect

the Arduino directly on a breadboard which has 0.1" spaced connectors. Forthe same

reason it's not possible to use standard prototyping perfboards with Arduino.

Arduino developers justi�ed that as a simple design aw which a�ect ed the �rst versions

of Arduino. However, as there were already shields available for it, they decided to kept

the design error for backward compatibility.

Another critics often made to Arduino is that it hides too much the in ner details of

the microcontroller or the program building details. People doing this critic are usually

experienced developers or engineers which feels somehow limited by the over simpli�ed

programming APIs. Those people miss the fact that it's actually possibleto program

Arduino without using the API and directly interact to the microcon troller.

Other people think that the microcontroller used for Arduino has just too low compu-

tation power. Someone asked for a more powerful computing architecture such as an

ARM based microcontroller.

However, the huge success of Arduino and the great projects people are doing with it,

demonstrate that, even with its limitations, Arduino can be a very good prototyping

platform. Moreover, I do think that the advantages of simplicity to use and openness

fair exceed any criticism that could be made to it.

25

3. ARDUINO

26

4

First steps with Arduino and

electronic prototyping

In this chapter I present my �rst experiments with Arduino and el ectronic circuits.

These are very simple examples but very good learning exercises.

Each example will be presented coupled with the circuit schematics, a picture of the

circuit prototyped with Arduino on a breadboard and, if necessary, an explanation of

the various theories and components involved.

4.1 Hello World!

It is common practice, while learning a new programming language or environment, to

code a very simple program which prints the textHello World to the screen.

Unfortunately, in microcontroller programming printing text is not t hat easy, so it's

usual to blink an LED instead. That's how microcontroller programmers are used to

say Hello World !

Before starting working on the Hello World program and circuit it's worth introducing

two components which will be used a lot in the following examples: LEDs and the

breadboard.

27

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

4.1.1 LED: Light-emitting diode

A light-emitting diode (LED) is a semiconductor light source. When a light-emitting

diode is forward biased (switched on), electrons are able to recombine with electron

holes within the device, releasing energy in the form of photons. This e�ect is called

electroluminescence and the color of the light (corresponding to theenergy of the pho-

ton) is determined by the energy gap of the semiconductor. LEDs, as any diode, only

allows current owing from the anode (+) to the cathode (-) but not i n the reverse

direction.

Thanks to their reliability, long lifetime, e�ciency and low pow er consumption, LEDs

are currently used in multiple applications: infrared remote controllers, state indicators,

LCD displays back-lights, semaphores and car lights, etc. In electronic prototyping,

LEDs can be really useful as they can be used as visual feedback for the user of the

prototype.

An LED can come in various forms and packages, however in electronic prototyping the

5 mm packages is the most common one. This package is characterized by a transparent

or colored round glassy case which has two metal legs coming out of the glass. The

longer led is the anode (+) and the shorter one is the cathode (-).

Figure 4.1: LED - Some standard 5mm LEDs (note the di�erent length of the legs),
LED electronic symbol and the parts of an LED. Pictures from (70)

Usually, an LED can be characterized by the following parameters which can be read

from the LED datasheet:

28

4.1 Hello World!

I f typ the typical forward (owing from the anode to the cathode) current t hat should

be used with this LED.

I f max the maximum forward current that the LED is able to tolerate.

Vf typ the typical forward voltage which the LED should be connected to.

Vf max maximum forward voltage

There are additional parameters such as the luminous intensity, the viewing angle or

the light wavelength but they can be considered of secondary importance compared to

the current and voltage characterization.

In order to meet the LED characterization and limit the current owin g into the LED

we have to add an in series resistor to the LED. The value of the resistor can be

computed easily using the following formula, derived from the Ohm law.

R =
(VS � VL)

I
(4.1)

Where VS is the voltage of the power source,VL is the voltage that will be applied to the

LED and I is the current which will ow through the LED. By simply substitu ting VL

and I values with I f typ and Vf typ from the LED datasheet into the R formula above

we obtain the correct value of the resistance needed by our LED. It's important to note

that, as the R formula above is based on Ohm law, the numbers should be expressed

in Volts (VS and VL) and Ampere (I), when usually in the datasheets current ratings

are expressed in mA.

Figure 4.2: In series resistor with an LED - Visualization of the in series resistor
formula.

29

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

4.1.2 Breadboard

A solder-less breadboard is a key element in electronics prototyping. It's used to rapidly

build circuits without using solder just by inserting wires in its various holes. Inside,

the breadboard holes are connected as per �gure 4.3: lines marked with letters are

connected vertically, while lines marked with + and - are connectedhorizontally. The

breadboard in �gure 4.3 has the lines A-E and F-J connected but there is no connection

between the two groups of lines. Same happens for the top and bottom powerlines:

there is no connection between them.

Figure 4.3: Breadboard - The green lines shows how the holes are connected.

4.1.3 Circuit Schematics and Prototype

In order to prototype the Hello World circuit, we simply connected t he LED to Arduino

digital pin 13 (+) and GND (-). We can connect the LED directly without us ing a

resistor on pin 13 as there are already an LED and resistors connected to it onthe

Arduino printed circuit board.

Figure 4.4 A shows the simple Hello World circuit prototyped on the Arduino Duemi-

lanove. The same circuit is then prototyped on a breadboard in �gure 4.4 B.

4.1.4 Code

This is the program we will use to blink the LED.

30

4.1 Hello World!

Figure 4.4: Hello World circuit prototyped - A: LED is inserted into GND and pin
Digital 13 being careful to inset the long leg (+) into pin 13 and the short one (-) into the
GND. B: This is the same circuit as in A but the breadboard has been used instead of
directly plugging into the Arduino

1 /* *

2 * Intermitel ly bl inks a LED connected to LEDPIN

3 */

4

5 # define LEDPIN 13

6

7 void setup () {

8 pinMode (LEDPIN , OUTPUT);

9 }

10

11 void loop () {

12 digi talWri te (LEDPIN , HIGH); // turns the LED on

13 delay (1000) ; // waits for a second

14 digi talWri te (LEDPIN , LOW); // turns the LED off

15 delay (1000) ; // waits for a second

16 }

As you can see, this is a pretty simple program but it is perfect to move the �rst steps

into the Arduino programming APIs.

31

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

We �rst de�ne a constant called LEDPIN and we set its value to 13. This is a good

programming habit which helps avoiding magic numbers (71).

setup() is executed at the beginning of the program execution and it's used to setup

how the Arduino board will work. In this program we set the board to use LEDPIN

(de�ned as pin 13 in the #de�ne statement) as an output, this means that we will be

able to drive the pin on or o� from our program.

loop() is executed continually by the Arduino microcontroller. So, It does the following

in an in�nite loop:

1. set LEDPIN to HIGH : this means that we are driving 5 V on pin LEDPIN . The

LED will turn on.

2. wait for a second

3. set LEDPIN to LOW (this means that we are not delivering voltage on pin 13).

The LED will turn o�.

4. wait for another second

Simply by inserting the program above into the Arduino IDE editor and by uploading

it, the Arduino board will store it in its microcontroller program memor y, it will execute

it and the LED will start blinking.

4.1.4.1 Blinking without using delay()

In the code above we useddelay() to delay the execution of the following lines of

code. Unfortunately there is a limitation using this solution: delay() is blocking, the

microcontroller will actually stop execution and the whole board will be unusable while

waiting for a delay() call. So you won't be able to program your board to do anything

while it's blocked into a delay() call.

The code below, taken from the Arduino Tutorial, does exactly the same of the above

one, but without using the delay() function.

32

4.1 Hello World!

1 // constants won 't change . Used here to

2 // set pin numbers :

3 const int ledPin = 13; // the number of the LED pin

4

5 // Variables wil l change :

6 int ledState = LOW; // ledState used to set the LED

7 long previousMil l is = 0; // wil l store last t ime LED was updated

8

9 // the fol low variables is a long because the time , measured i n

mil iseconds ,

10 // wil l quickly become a bigger number than can be stored in an int .

11 long interval = 1000; // interval at which to blink

(mi l l iseconds)

12

13 void setup () {

14 // set the digital pin as output :

15 pinMode (ledPin , OUTPUT);

16 }

17

18 void loop ()

19 {

20 // here is where you 'd put code that needs to be running all the time .

21

22 // check to see if it 's t ime to blink the LED; that is , if the

23 // di f ference between the current t ime and last t ime you blin ked

24 // the LED is bigger than the interval at which you want to

25 // bl ink the LED.

26 unsigned long currentMi l l is = mil l is () ;

27

28 if (currentMi l l is - previousMil l is > interval) {

29 // save the last t ime you bl inked the LED

30 previousMil l is = currentMi l l is ;

31

32 // if the LED is off turn it on and vice - versa :

33 if (ledState == LOW)

34 ledState = HIGH;

35 else

36 ledState = LOW;

37

38 // set the LED with the ledState of the variable :

39 digi talWri te (ledPin , ledState) ;

40 }

41 }

33

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

The code above is still pretty simple. With the call to millis() we get the number

of milliseconds passed from when the last time the microcontroller has been reset (eg:

when switched on, pressed the reset button or when a new program has been uploaded).

So, the code switches the state of the LED whenever the di�erence between the last

timer reset and the current time is greater than the con�gured interval.

As you can see, there are no calls todelay() here so we could have added more instruc-

tions to be executed between one switching of the LED and another. This wouldn't

have happened withdelay().

4.1.5 Extension

It's pretty simple to extend this example so that, instead of blinking one LED, two

LEDs will blink alternatively. Of course, we will need two LEDs now. As I said before,

pin 13 has an in series resistor connected to it, so we didn't need touse a resistor when

we connected the �rst LED. This applies only to LED 13: any other digital pi n doesn't

have any resistor connected: an in series resistor will be needed when connecting the

second LED. A picture of the prototyped circuit is shown in �gure 4.5.

Figure 4.5: Hello World circuit Extended - This is the same circuit as in �gure 4.4
but another LED has been added. Note the presence of an additional 2.2 K
 resistor in
series with the new LED.

34

4.2 digitalRead(): using pushbuttons and tilt sensors

Programming two LEDs instead of one is just a matter of duplicating the same instruc-

tions of the �rst Hello World program. This has been done in the program below.

1 /* *

2 * Intermitel ly bl inks two LEDs connected to LEDPIN1 and LEDP IN2

3 */

4

5 # define LEDPIN1 13

6 # define LEDPIN2 12

7

8

9 void setup () {

10 pinMode (LEDPIN1 , OUTPUT);

11 pinMode (LEDPIN2 , OUTPUT);

12 }

13

14 void loop () {

15 digi talWri te (LEDPIN1 , HIGH); // turns the LED on

16 delay (500) ; // waits for a second

17 digi talWri te (LEDPIN2 , HIGH); // turns the LED on

18 delay (500) ; // waits for a second

19 digi talWri te (LEDPIN1 , LOW); // turns the LED off

20 delay (500) ; // waits for a second

21 digi talWri te (LEDPIN2 , LOW); // turns the LED off

22 delay (500) ; // waits for a second

23 }

4.2 digitalRead(): using pushbuttons and tilt sensors

In the previous section we useddigitalWrite() to drive a voltage on an Arduino pin to

lights one or more LEDs. In this section instead we will usedigitalRead(), the function

used to read a logic level from the arduino pins.

digitalRead() is pretty simple: it will return HIGH (a constant equal to 1) if the v oltage

on its pin is high or LOW (a constant equal to 0) if low. Note that an ATMEGA

microcontroller running at 5 V will read any voltage major than 2.5 V as logic high.

With this function we can then easily read the status of a switch or button. Before

doing so, let's have a closer look at the components we will use: pushbuttons and tilt

sensors.

35

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

4.2.1 Pushbuttons

A pushbutton is a simple switch mechanism which allows for user generated changes in

the state of a circuit. Pushbutton usually comes with four legs but, asyou can see from

the picture below, legs are always connected in groups of two. When thepushbutton

is pressed all the 4 legs get connected.

Figure 4.6: A pushbutton and its schematic representation - This is the pushbutton
available in the Arduino Base Workshop KIT. You can note how its legs are connected two
by two when the button is not pressed. When it's pressed, all the legs get connected.

4.2.2 Tilt Sensors

Tilt sensors or tilt switches are a pretty simple electronic component which consists of

a small plastic case which contains a metal ball. At the bottom of the sensor there

are four legs which are disconnected. The ball inside the case is able to move: when

you move the sensor with the legs at the bottom, the ball will move to the bottom

connecting the four legs. When the sensor is placed with legs up, theball moves to the

top disconnecting the legs. You can understand the behavior by having a look at �gure

4.7. Basically, a tilt sensor is a switch, just like a pushbutton. The di�erence between

a tilt sensor and a pushbutton is how they mechanically change their open/close state:

the tilt sensor by tilting, the pushbutton by pushing.

36

4.2 digitalRead(): using pushbuttons and tilt sensors

Figure 4.7: A tilt sensor or tilt switch - The drawing on the left clearly explain what
happens inside a tilt switch.

4.2.3 Simple example with a Pushbutton and a Tilt sensor

It's useful to prototype a very simple circuit which shows us how Pushbuttons and Tilt

sensors actually work. So, we will use them as switches to light an LED. This circuit

is shown in �gure 4.8. The result is that, when we push on the pushbutton, the circuit

will close and the LED will lights on. Same result when the tilt switch has the legs

pointing the bottom, when it's legs up the LED will be o�.

Figure 4.8: Simple example circuit for pushbuttons and tilt sensors - When we
close the circuit, by pushing the pushbutton or by orientate the tilt switch with the legs
bottom, the LED will light. Note the 2.2K
 resistor connected in serie s to the LED to
limit the current owing through it.

37

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

4.2.4 Reading the switch status from Arduino

The circuits we created above are really simple. We can't do much with them. Instead

pushbuttons and tilt sensors might be really useful if we could get their open/closed

state as an input value to the Arduino board. We could use this value to trigger actions

in an Arduino program generating all di�erent kind of output from the board.

From what we have seen in the sections above, we may be tempted to use something

like the circuits in �gure 4.9 to read the state of a switch from the Ard uino board.

Unfortunately this won't work.

When we want to read a logical value in Arduino we have to set the pin as input.

This can be done in thesetup() routine of our Arduino program by using the function

pinMode() (47). Using pinMode() we can set the status of the pin as input. This means

that the state of pin will now be as high impedance: the pin is not being driven actively

by the circuit and it will oat (acting as an antenna) reading randomly HIGH or LOW.

That's why the circuits in �gure 4.9 won't work as expected as when theswitch is open

and digital pin 2 is in high impedance state the status read bydigitalRead() will be

oating. Of course, when we close the switch we will get a stabledigitalRead() result

but this is still not useful.

Figure 4.9: Wrong circuits for connecting a switch to a digital input - This
circuits wont work as expected. As pin 2 has been set as INPUT during setup, it's now
in high impedance state so, if not connected to a logic value it will oat between logical
values.

38

4.2 digitalRead(): using pushbuttons and tilt sensors

4.2.4.1 Pull-up and Pull-down resistors

In order to �x the oating circuit described above we have to intro duce the usage of

pull-up or pull-down resistors. Example circuits are displayedin �gure 4.10.

Figure 4.10: Example circuit for Pull-up and Pull-down usage - Using these
circuits the input read on pin 2 isn't oating anymore but it's reliab le.

The intuitive idea behind the pull-up and pull-down techniqu e is that we need to

somehow give a default connection to the switch even when it is open so that we can

�x the oating behavior of the high impedance microcontroller input p in.

Let's explain how this technique works by focusing on the pullup circuit in �gure 4.10.

When the switch is open, there is a weak connection from digital pin 2 to the 5 V source

through the 10K
 resistor: our digital pin will read HIGH. Instead, when we close the

switch there will be a strong pull of the digital pin 2 to ground which will override the

very weak pull to HIGH: our pin will read LOW.

Similar, but inverted behavior is achieved using the pull-down technique. When the

switch is open, there will be a weak pull of digital pin 2 to ground so itwill read LOW.

Instead, when the switch is closed there will a strong pull of digital pin 2 to the 5 Volt

source, and pin 2 will read HIGH.

You may have noted the presence of a 220
 resistor placed just before the input pin.

This resistor acts as bu�er protecting from shorts caused by incorrectly use the pin 2

39

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

as output instead of input. If by error, we set the pin as output and set the output

HIGH we may cause a short which could damage the pin or the whole microcontroller.

It's important to note how the read values on the digital pin change if we use a pull-up

or pull down scheme with the same switch state. This is summarizedin the table below:

Pull technique Switch open Switch closed

Pull-up reads HIGH reads LOW

Pull-down reads LOW reads HIGH

Table 4.1: Read values for pull-up and pull-down techniques

4.2.4.2 Debouncing a button

Before reading the state of a pushbutton or tilt switch on Arduino we still have some-

thing to cover. In the section above we assumed that as soon as we pressour pushbutton

we will immediately get the opposite value. Unfortunately, it's not so simple.

Due to the mechanical characteristics of a switch, the read value in the �rst instants

before the change of state will somehow oscillate. This is displayed in �gure 4.11. The

state of the button somehow bounces in the �rst moments the button is pressed. This

can cause some problems as our microcontroller will actually detect mostof those state

changes potentially giving us problems.

Figure 4.11: A bouncing button on an oscilloscope - Note how the change of state
isn't immediate but it oscillate in the �rst moments.

40

4.2 digitalRead(): using pushbuttons and tilt sensors

There are di�erent ways of �xing this issue. Using a pure electronic approach, it can

be �xed using a capacitor which will compensate the bounces. An example of such

solution is explained in (19).

However, it's also possible to �x this undesired issue directlyon the microcontroller by

adding a small delay each time a change of the switch status is detected. If the delay

is long enough to cover the bouncing time then we won't detect any of the bouncing

change of state. This solution is implemented in the code in the following pages.

4.2.4.3 Controlling an LED in Arduino according to the status of a switch

in input

We can now wire up the �rst example of reading the status of a switch in Arduino.

We will use the input coming from a switch to light an LED connected to another pin.

The idea is to mimic the behavior of the last example but this time using the Arduino

microcontroller to drive the output to the LED.

The circuit schematics and a picture of it prototyped on a breadboard with Arduino

are shown in �gure 4.12. You can see how we used a pull-down approach so we expect

the pin 2 to read LOW when the button is not pressed while we expect anHIGH when

the button is pressed.

Figure 4.12: Controlling an LED in Arduino according to the status of a swi tch
in input - Note the pull-down approach.

41

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

Once we have the circuit prototyped, we can use the following codeto obtain the desired

behavior.

1 /* *

2 * Turn on an LED connected to LEDPIN only when

3 * the value readed on INPIN is HIGH

4 */

5

6 # define LEDPIN 13

7 # define INPIN 2

8

9

10 void setup () {

11 pinMode (LEDPIN , OUTPUT);

12 pinMode (INPIN , INPUT);

13 }

14

15 void loop () {

16 if (digi talRead (INPIN) == HIGH){

17 digi talWri te (LEDPIN , HIGH); // turns the LED on

18 }

19 else {

20 digi talWri te (LEDPIN , LOW); // turns the LED off

21 }

22 delay (10) ; // debounces switch

23 }

In setup() we con�gure the pin 2 as high impedance setting it as INPUT. We also

con�gure pin 13 to be used as output so that we can drive the LED.

The actual code in loop() is still quite simple: we simply write HIGH or LOW to the

LED pin according to the value read on the button pin. Note the call to delay() which

debounces our switch.

4.2.4.4 Interrupts in Arduino from a switch

By using exactly the same circuit prototyped in �gure 4.12 above we can introduce

another very useful programming feature of the Arduino microcontroller: interrupts.

Let's see how the code became:

1 /* *

42

4.3 analogRead(): Reading analog values with Arduino

2 * Turn on an LED connected to LEDPIN only when the input

3 * readed on INTERRUPTPIN (0 is Pin 2) changes its value

4 */

5

6 # define LEDPIN 13

7 # define INTERRUPTPIN 0

8

9 volat i le boolean state = LOW;

10

11 void setup () {

12 pinMode (LEDPIN , OUTPUT);

13 attachInterrupt (INTERRUPTPIN , buttonChange , CHANGE);

14 }

15

16 void loop () {

17 digi talWri te (LEDPIN , state) ;

18 }

19

20 void buttonChange ()

21 {

22 state = ! state ;

23 }

The idea is that in setup() we setupbuttonChange() to be the interrupt handler using

attachInterrupt() . So, each time there is a change in the state of INTERRUPTPIN

the function buttonChange() will be executed toggling the value of the volatile variable

state. As in loop() we continually write the value of state to the LEDPIN this code

actually produce the desired behavior.

Unfortunately, we can't use the function delay() inside interrupt handlers (due to lim-

itations in the internal functioning of the microcontroller) so we can't use the software

debouncing approach here. An hardware debouncing solution will be needed.

4.3 analogRead(): Reading analog values with Arduino

Until now, we only worked with digital signals whose values could change only between

HIGH and LOW. However there are components which doesn't output a digital signal

but instead output a continuous signal ranging from 0 to a known voltage. This kind

of signal is called analog signal and the value of such signal is called analog value.

43

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

A microcontroller is however a discrete entity which is only capable of working on

discrete variables (actually only on 0 and 1) so we need some way of converting an

analog value into a digital one.

This analog to digital conversion happens inside the analog-to-digital converter (ADC).

The Arduino microcontroller has an integrated ADC with a 10-bit precisi on. The ADC

is capable of converting any analog signal ranging from 0 V to the voltage appliedon

the analog reference pin (AREF) to a discrete value ranging from 0 to 1023.

The Arduino function for sampling values from the ADC is analogRead(). Before doing

a real example we still need to introduce a couple more concepts.

4.3.1 Voltage divider circuits and Potentiometers

A voltage divider circuit is capable of divide the voltage applied on one side resulting

in the divided output voltage on the other side. A voltage divider circuit is displayed

in �gure 4.13.

If we recall the Ohm law as we introduced it in section 2.3, we know that the voltage

drop across any resistor is given by:

En = I nRn (4.2)

where I n is the current owing into the resistor n and Rn is the resistor value.

We also know that the total current owing into a series circuit is given by:

I tot =
E tot

Rtot
(4.3)

By combining those two formulas substituting I n with I tot we obtain the voltage divider

formula:

En = E tot
Rn

Rtot
()

En

E tot
=

Rn

Rtot
(4.4)

This formula states that the ratio of individual resistance to total re sistance is the

same as the ratio of individual voltage drop to total supply voltage in a voltage divider

circuit.

44

4.3 analogRead(): Reading analog values with Arduino

Figure 4.13: Voltage divider circuit - The voltage acrossR2 follows the voltage divider
formula: ER 2 = Vin

R 2
R tot

. Picture from (27)

One device frequently used as a voltage-dividing component is the potentiometer, which

is a resistor with a movable element positioned by a manual knob or lever. The mov-

able element, typically called a wiper, makes contact with a resistive strip of material

(commonly called the slidewire if made of resistive metal wire) at anypoint selected

by the manual control as shown in �gure 4.14.

Figure 4.14: Anatomy of a potentiometer - Its circuit behavior, components inside
and a picture of a real potentiometer. Pictures from (27).

When the knob is rotated, we are able of changing the values of theR1 and R2 resistors

in associated voltage divider circuit of the potentiometer. As resultthe divided voltage

changes when we rotate the knob.

We can experience the voltage dividing capability of the potentiometer by building a

very simple circuit using Arduino as shown in �gure 4.15. We take the 5V source of

Arduino and connect a potentiometer in the middle between the groundand an LED.

45

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

This way, the potentiometer acts as a voltage divider circuit and the voltage which

reaches the LED, thus the intensity of emitted light, depends on how we rotate the

knob.

Figure 4.15: Simple circuit for experience with a potentiometer - As we rotate
the knob, the amount of light emitted by the LED will change.

4.3.2 Reading a potentiometer with Arduino

The obvious evolution of the example above is trying to get the analog valuecoming out

from the potentiometer into Arduino using the integrated ADC of the AT MEGA 328p

with analogRead(). The goal will be using the analog value read from the potentiometer

and use it as interval between the blinks of an LED.

We can prototype a simple circuit as in picture 4.16. We connect the potentiometer to

5 V, ground and to Arduino Analog pin 2. We insert an LED into Digital pin 13.

Now, if we use the following Arduino code we get the expected behavior from the

circuit.

1 /* Reads the value from a potent iometer and use it as delay */

2

3 # define POTPIN 0

4 # define LEDPIN 13

5

6 int val = 0;

7

8 void setup () {

46

4.3 analogRead(): Reading analog values with Arduino

Figure 4.16: Circuit for reading a potentiometer with Arduino - The potentiome-
ter acts as voltage divider modifying the voltage read on Analog pin 0. The readvalue is
then used as delay between the LED blinking.

9 pinMode (LEDPIN , OUTPUT);

10 }

11

12 void loop () {

13 val = analogRead (POTPIN); // read the value from the sensor

14 digi talWri te (LEDPIN , HIGH); // turn the ledPin on

15 delay (val) ; // stop the program for some time

16 digi talWri te (LEDPIN , LOW); // turn the ledPin off

17 delay (val) ; // stop the program for some time

18 }

This code is still very simple. We simply read the voltage coming outfrom the poten-

tiometer to analog pin 2 using analogRead() and use that value as milliseconds delay

for the calls to delay().

4.3.3 Thermistors and Light dependent resistors with Arduino

In the past sections we introduced voltage divider circuits and gavethe potentiometer

as an example of voltage divider circuit. However there are many di�erent components

which can be used in a voltage divider circuit as they somehow provide di�erent resistor

values depending on external factors. Examples of such components are Thermistors

and Light dependent resistors (LDRs).

47

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

4.3.3.1 Thermistors

A thermistor is a type of resistor whose resistance varies with temperature. Thermistors

are widely used as inrush current limiters, temperature sensors, self-resetting over-

current protectors, and self-regulating heating elements.

Thermistors follows the following rule:

� R = k � � T (4.5)

where � R is the change in resistance, �T is the change in temperature andk is the

�rst-order temperature coe�cient of resistance.

As example, given k positive and k=0.7, if we increase the temperature of5 degrees,

the component resistance will also increase by �R = k � � T = 0 :7 � 5 = 3:5
.

Note that some thermistors have a temperature coe�cient of resistance which is nega-

tive. This will make � T and � R inversely proportional.

In �gure 4.17 there is the thermistor available in the Arduino Base Workshop KIT.

You can also see an example circuit for reading it and a picture of it prototyped on the

Arduino. As you can see, this is still a voltage divider circuit whose output value this

time depends on the temperature detected by the thermistor.

Testing this circuit is simple. We can run exactly the same code used for reading the

potentiometer: if we touch the thermistor we will produce an increase of its inter-

nal temperature which will also increase its associated resistance. The LED blinking

frequency should change once we touch the thermistor.

4.3.3.2 Light dependent resistors (LDRs)

A photoresistor or light dependent resistor is a resistor whose resistance decreases with

increasing incident light intensity. In the Arduino Base Workshop KIT there is a

10..40K
 LDR (VT90N2) which is depicted in �gure 4.18. By using exactly the same

circuit used for the thermistor but replacing it with the LDR, we c an now have the

voltage on Analog pin 0 depends on the amount of incident light on the LDR.

48

4.4 Driving bigger loads: Transistors and Optocouplers

Figure 4.17: A thermistor and an example circuit with Arduino - The resistance
of the thermistor will variate with temperature so that the voltage across analog pin 0 will
also variate with temperature.

Testing the circuit is simple. We still can use the same code used for the potentiometer

on Arduino and, once we run it, the blinking interval of the LED should change if we

modify the quantity of light getting to the LDR (we can cover it with ou r hand).

4.4 Driving bigger loads: Transistors and Optocouplers

In the past sections we only used the output functionalities of Arduino to light LEDs.

However, Arduino can be used to drive many other kind of devices. For example, we

may be interested in using Arduino to light a big lamp or to activate an electrical

motor.

This kind of devices usually require a big amount of current and a higher voltage

than the 5 V that the Arduino is capable of deliver. Moreover an ATMEGA 328p

can only deliver 50mA of current: if you connect a bigger load, the pin or thewhole

microcontroller could get damaged.

Fortunately, there are components which helps in driving a circuit from another one.

Those components are transistors and optocouplers.

49

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

Figure 4.18: A Light dependent resistor and an example circuit with Ard uino
- The resistance of the LDR will variate with the quantity of incident light on it so that
the voltage across analog pin 0 will also variate with the quantity of incident light.

4.4.1 Transistors

A Transistor is a semiconductor device extensively used in analog anddigital electronics.

Transistors usually have 3 connectors called collector, base and emitter. In normal state

the collector and emitter are disconnected but, when a current is applied to the base

connector, the transistor change its state and the collector and emitterget connected

allowing current to ow between them.

The Arduino Base Workshop KIT comes with two types of transistors, displayed in

�gure 4.19: a MOS Irf540 (left) and a BC547 (right). They di�ers from the bu ilding

technique used which results in di�erent speci�cs. For big currents (eg powering motors)

the MOS Irf540 will be perfect. The BC547 is not capable of delivering lot of current so

use it with care. For all the details on these two components the respective datasheets

should be consulted.

4.4.1.1 Using transistors with Arduino

We can prototype a very simple circuit to check how a transistor works. The circuit is

displayed in �gure 4.20: we connected three LEDs to the 9 V source of Arduino (which

50

4.4 Driving bigger loads: Transistors and Optocouplers

Figure 4.19: Transistors - MOS Irf540 (left) and BC547 (right). In the center the
schematic diagram of a transistor.

has to be connected to an external battery to work) and placed a transistor between

them and the ground. We connected the Digital pin 2 to the base connectoron the

transistor. This way, when we apply a voltage on pin 2 from the Arduino wecan close

the 9V circuit allowing current to ow in it.

Note that three LEDs is not really a very big load but this just serves as example as

at the time of this tests I didn't have access to a DC motor.

Figure 4.20: Transistor circuit - MOS Irf540 (left) and BC547 (right). In the center,
the schematic diagram of a transistor.

We can test this circuit using the Hello World program (see code in section 4.1.4 page

30) with a simple modi�cation: we will use pin 2 as output (in the Hello World program

51

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

we used pin 13).

By running that code and using digital pin 2 as output, each time the output on pin 2

is HIGH our transistor will get a voltage on its base connector resulting inthe collector

and the emitter getting connected. Current coming from the +9V source can the ow

down through the resistor and the three series LEDs lighting them on.

Again, it's important to note how the 5 V circuit of the Arduino is comple tely isolated

from the 9 V circuit driving the LEDs.

4.4.2 Optocouplers

An optocoupler, also called opto-isolator, optical isolator, optical couplingdevice, pho-

tocoupler, or photoMOS, is an electronic device that usually contains aninfrared light-

emitting diode (LED) and a photodetector and use them to transfer an electronic signal

between element of circuits maintaining them electrically isolated (�gure 4.21.

Figure 4.21: Inside an optocoupler - The two circuits are isolated. When the LED is
light current can ows in the circuit on the right.

When a voltage is applied to the LED, the LED lights and illuminate the ph otodetector

which produces an output current on the photodetector: basically this means that now

the photodetector circuit is connected and current can ow in it.

4.4.2.1 Using optocouplers with Arduino

The Arduino Base Workshop kit comes with two 4N35 Optocouplers packaged as a

DIL-6 package. This little component has 6 legs each of them having a di�erent usage.

52

4.5 Pulse Width Modulation (PWM): analog outputs with digital means

It can be easily understood by looking at �gure 4.22 from the 4N35 datasheet which

shows us the inside schematics of the 4N35.

Figure 4.22: 4N35 Optocoupler - Picture from the 4N35 Datasheet.

We have leg 1 and 2 near the printed dot on the chip (that's visible on it if we look care-

fully) that acts respectively as anode and cathode. Leg 3 isn't connected to anything:

it's just useless. We then have leg 4, 5, 6 respecly emitter, collector and base.

We already know these terms from the transistor introduction above.They do exactly

the same of the legs of a transistor. The di�erence here is that we can leave the base

unconnected and just use the LED (legs 1 and 2) to connect the collector and the base.

In order to test how an optocoupler works we can use the circuit depicted in �gure

4.23: as you can see it is really similar to the circuit we used for testing the transistor.

We can test this circuit by using exactly the same code used on the transistor example

(Hello World with Digital pin 2 as output). As expected, the LEDs will l ight when

digital pin 2 is HIGH and will switch o� when digital pin 2 is LOW.

4.5 Pulse Width Modulation (PWM): analog outputs with

digital means

Digital boards and processors, like the Arduino board and its ATMEGA 328 micro-

controller, usually have some problems providing an Analog Output, a variable signal

53

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

Figure 4.23: Optocoupler circuit and Arduino - Picture from the 4N35 Datasheet.

which can range from eg 0 to 5 V. This is a consequence of the fact that theyare digital

components, so they work using 0 and 1, they are not capable of such a variable output.

Fortunately, there is the Pulse Width Modulation (PWM) techniqu e which makes pos-

sible to get an analog output using digital means.

Digital control is used to create a square wave, a signal switched between on and o�.

This on-o� pattern can simulate voltages in between full on (5 V) and o� (0 V) b y

changing the portion of the time the signal spends on versus the time that the signal

spends o�. The duration of "on time" is called the pulse width. To get var ying analog

values, you change, or modulate, that pulse width. If you repeat this on-o� pattern

fast enough with an LED for example, the result is as if the signal is a steady voltage

between 0 and 5 V controlling the brightness of the LED.

In Arduino, we have the function analogWrite() which implements PWM. It gets a

parameter on a value between 0 and 255. You can see some examples of square waves

generated with analogWrite() in �gure 4.24.

54

4.5 Pulse Width Modulation (PWM): analog outputs with digital means

Figure 4.24: Example of Pulse Width Modulation (PWM)

4.5.1 Fading an LED using PWM with Arduino analogWrite()

Let's try the PWM analogWrite() implementation of Arduino with a simpl e example.

Let's try fading on and o� an LED. We just need a 1K
 resistor in series wit h an LED

connected to PWM capable digital pin on Arduino. We'll use pin 9.

The following code, coming from the Arduino analogWrite() tutorial imp lements exactly

the desired e�ect.

1 /*

2 Fading

3

4 This example shows how to fade an LED using the analogWrite () funct ion .

5

6 The circuit :

7 * LED attached from digital pin 9 to ground .

8

9 Created 1 Nov 2008

10 By David A. Mell is

11 Modif ied 17 June 2009

12 By Tom Igoe

13

14 http :// arduino .cc /en / Tutorial / Fading

15

16 */

17

55

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

18

19 int ledPin = 9; // LED connected to digital pin 9

20

21 void setup () {

22 // nothing happens in setup

23 }

24

25 void loop () {

26 // fade in from min to max in increments of 5 points :

27 for (int fadeValue = 0 ; fadeValue <= 255; fadeValue +=5) {

28 // sets the value (range from 0 to 255) :

29 analogWrite (ledPin , fadeValue);

30 // wait for 30 mil l iseconds to see the dimming effect

31 delay (30) ;

32 }

33

34 // fade out from max to min in increments of 5 points :

35 for (int fadeValue = 255 ; fadeValue >= 0; fadeValue -=5) {

36 // sets the value (range from 0 to 255) :

37 analogWrite (ledPin , fadeValue);

38 // wait for 30 mil l iseconds to see the dimming effect

39 delay (30) ;

40 }

41 }

4.6 Serial communication with Arduino

Arduino, as we have seen in the past sections, o�ers a lot of possibilities to interact with

sensors, actuators, motors, etc.. But this is somehow limited by thesimple capabilities

of Arduino itself.

Fortunately, it's pretty simple to interface Arduino with more com plex devices like a PC

or another Arduino board. This can be achieved using the integrated Serial interface

of Arduino.

As we saw on section 3.2.2.2, Arduino connects to the PC using an USB port. Anyway,

that USB connection is actually used like a Serial (RS232) connection. TheArduino

IDE uses it to upload our programs to the board but the serial connection canalso be

used for any other kind of communication.

56

4.6 Serial communication with Arduino

Arduino also has digital pins 0 (RX) and 1 (TX) which can be used to directly connect

Serial interfaced wires into Arduino. They deliver the same signalssent on the USB

Serial interface.

It's important to note that, when the serial communication is in use, i t's impossible

to use digital pins 0 and 1 for anything else then serial communication. They are

delivering serial signals (even if you don't plug them and you are using USB) so you

can't use them for anything else.

4.6.1 Arduino Serial programming

The Arduino programming language comes with a really simple Serial API. It's all

contained into the Serial library which contains the following functions:

begin() sets the datarate in bits per second (baud) for serial data transmission.

end() disable serial communication

available() gets the number of bytes (characters) available for reading over the serial

port.

read() reads the �rst byte of incoming serial data available.

ush() ushes the bu�er of incoming serial data.

print() prints data to the serial port.

println() prints data to the serial port, followed by a carriage return character(ASCII

13, or \r) and a newline character (ASCII 10, or \n)

write() writes binary data to the serial port.

A complete description of these function is out of scope here. For more information

and all the details of the Arduino Serial APIs you should refer to the o�ci al Arduino

Serial API documentation (48).

57

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

4.6.2 Writing data to the Serial interface with Arduino: reading the
state of one button

Let's start practicing with Arduino serial API by writing a simple p rogram which reads

the state of one button and, if pressed, lights on an LED and send the buttonstate

over the serial interface.

For doing so we'll start from the digitalRead() example we saw in section 4.2.4.3. The

circuit will be almost the same: the only di�erence will be that we' ll use a pull-up

resistor rather than a pull-down one. This decision will make sensein the next examples.

Note that a pull-up connected pin will read HIGH when the button is not p ressed while

it will read LOW when the button is pressed. The circuit is depicted in �gure 4.25.

Figure 4.25: Circuit for reading the state of one button - Note the usage of a
pullup resistor.

We can use the following program to read the state of the button from the Digital

In pin and then switch o� the LED when the button is pressed and communicate the

button state over the Serial interface.

1 /* *

2 * Read the state of the button from the Digital In pin and

3 * then switch off the LED when the button is pressed and commun icate

4 * the button state over the Serial interface

5 */

6

58

4.6 Serial communication with Arduino

7 # define LEDPIN 13

8 # define INPIN 2

9

10 int state = LOW;

11

12 void setup () {

13 Serial . begin (9600) ; // setup serial connect ion speed

14 pinMode (LEDPIN , OUTPUT);

15 pinMode (INPIN , INPUT);

16 }

17

18 void loop () {

19 delay (10) ; // debounces switch

20 int sensorValue = digi talRead (INPIN);

21 if (state != sensorValue) {

22 state = sensorValue ;

23 digi talWri te (LEDPIN , sensorValue); // turns the LED on or off

24 Serial . pr int ln (sensorValue , DEC);

25 }

26 }

In the setup() routine we initialize the Serial interface and set its speed to 9600 bauds.

In loop() we debounce the switch then we read the button status withdigitalRead().

We keep track of the current state of the button. By doing this we are able to only

communicate state changes in the button.

I think that it's pretty important to keep the amount of information ow ing trough

the Serial interface low. It seems that most of the how-tos and examples I've found

online each loop they print to the serial interface. I think this is pretty useless as we

are only interested in state changes, we do know that between two state changes the

button hasn't changed its status.

So, only if we detect a state change, we usedigitalWrite() to turn on or o� our LED

and then print the value as decimal usingSerial.println() .

Once we create the circuit and we upload the program above to Arduino, we are able

to use the Arduino IDE Serial Monitor to show everything that passes on the serial

connection and thus test our program.

59

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

4.6.3 Reading the state of two buttons with Arduino and communi-
cate their state via Serial interface

We now try to make the above example a little bit more complex by reading two buttons

instead of one. We'll now need two pull-up resistors and another LED. Remember that

pin 13 has a 1K
 resistor connected in series, so it's safe to directly connect the LED

to it. If we want to add another LED, for example on Digital pin 12, we'll have to use

a series 1K
 to avoid damages to the LED. The resulting circuit can be seen in �gures

4.26 and 4.27.

Figure 4.26: Circuit for reading the state of two buttons - Note the usage of a
pullup resistors.

Extending the program presented in section 4.6.2 for using two buttons instead of one is

trivial and won't be reported here for brevity. You can note however that the presence

of external pullups somehow adds complexity to the whole circuit andyou can easily

understand how this can became a problem as the number of buttons increase. A

solution to this issue is presented in the following section.

4.6.4 Using internal pull-up resistors

The ATMEGA chip mounted on the Arduino provides internal 20K pull-u p resistors

on any digital input pin. This feature can be enabled in the software with this two

calls, usually implemented insetup():

60

4.6 Serial communication with Arduino

Figure 4.27: Picture of the circuit for reading the state of one button - Note the
usage of a pullup resistor.

pinMode(pin, INPUT); // set pin to input

digitalWrite(pin, HIGH); // turn on pullup resistors

By writing HIGH on a digital input pin previously set as INPUT we enable t he 20K

internal pull-up resistors. Doing so, we no more need to connect external pull-up

resistors. The circuit became as in �gure 4.28.

The complete code for reading two buttons, blink the associated LEDsand print the

status of the buttons over serial interface is reported below.

1 /* *

2 * Uses internal pul lups to read 2 pushbutton states ,

3 * Communicate the state of the button using serial interface and

4 * l ights on /off 2 LEDs associated with the buttons

5 */

6

7 # define LEDPIN1 13

8 # define LEDPIN2 12

9 # define INPIN1 2

10 # define INPIN2 3

11

12 int state1 = HIGH;

61

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

Figure 4.28: Reading two buttons using the internal pullups resistor s - Note
how the circuit looks really more simple.

13 int state2 = HIGH;

14

15 void setup () {

16 Serial . begin (9600) ;

17 pinMode (LEDPIN1 , OUTPUT);

18 pinMode (LEDPIN2 , OUTPUT);

19

20 pinMode (INPIN1 , INPUT);

21 digi talWri te (INPIN1 , HIGH); // enable pul lup resitor

22

23 pinMode (INPIN2 , INPUT);

24 digi talWri te (INPIN2 , HIGH); // enable pul lup resistor

25 }

26

27 void loop () {

28 delay (10) ; // debounces switches

29 int val1 = digi talRead (INPIN1);

30 int val2 = digi talRead (INPIN2);

31 if (state1 != val1 || state2 != val2) {

32 state1 = val1 ;

33 state2 = val2 ;

62

4.6 Serial communication with Arduino

34 digi talWri te (LEDPIN1 , val1) ; // turns the LED on or off

35 digi talWri te (LEDPIN2 , val2) ; // turns the LED on or off

36 Serial . print (val1 , DEC);

37 Serial . pr int ln (val2 , DEC);

38 }

39 }

4.6.5 Two-way Serial communication with Arduino

In the examples above we used serial communication only to print something to the

Serial interface from the Arduino board. However, Arduino can also read from the

serial interface.

Now, we will try to implement a little program which could leverage tw o ways commu-

nication capabilities of the Arduino board: we'll plug only one LED to pin 13 and we'll

try to light it on or o� using a command coming from the serial interface.

In the programs above we usedSerial.print() and Serial.println() to print data to the

Arduino serial interface. In order to implement a simple two-way communication we

also have to be able to read from the serial interface. TheSerial.read() function does

exactly that.

The following program reads from the Serial connection, if it read a 1 it turns on the

LED, if it read 0 it turn o� the LED.

1 /* *

2 * Reads commands coming from serial interface to drive an LED on/off

3 * Also prints led status back

4 */

5

6 # define LEDPIN 13

7

8 int state = LOW;

9 char incomingByte = 0;

10

11 void setup () {

12 Serial . begin (9600) ;

13 pinMode (LEDPIN , OUTPUT);

14 }

15

63

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

16 void loop () {

17

18 // send data only when you receive data :

19 if (Serial . avai lable () > 0) {

20 // we receive a char represent ing an integer . let 's converto to int

21 int incomingState = (Serial . read () == '1 ') ;

22

23 // say what you got :

24 Serial . print (" I received : ") ;

25 Serial . pr int ln (incomingState , DEC);

26

27 if (incomingState != state) {

28 state = incomingState ;

29 digi talWri te (LEDPIN , state) ; // turns the LED on or off

30 Serial . print (" Sett ing LED as : ") ;

31 Serial . pr int ln (state) ;

32 }

33 else {

34 Serial . print (" Doing nothing . LED already : ") ;

35 Serial . pr int ln (state) ;

36 }

37 }

38 }

4.7 A multisensors game controller with Arduino and Pro-

cessing

In the previous sections we introduced most of Arduino input output capabilities. We

now have enough information to create a very simple but functional game controller

which interacts with a program running on the PC. The idea is to read the status

of some switches, a tilt sensor, a potentiometer and an LDR and send thoseto the

computer via Serial interface and use them to modify the state of theprogram running

on the computer.

4.7.1 Multisensors controller circuit

The circuit used is displayed in �gure 4.29. We use the internal pullups on digital

inputs 2 to 7 so we can connect 5 buttons (up, down, left, right, �re) and the tilt switch

64

4.7 A multisensors game controller with Arduino and Processing

directly without external pullups. We add 3 LEDs to digital 11, 12 and 13 so that we

can use them as visual feedback for the user. On the right we have the analog inputs:

the LDR and the potentiometer.

Figure 4.29: Multisensors controller circuit - Note how the circuit looks really more
simple.

4.7.2 Processing

Processing is an libre programming language and integrated development environment

(IDE) built for the electronic arts and visual design communities with the purpose of

teaching the basics of computer programming in a visual context, and to serve as the

foundation for electronic sketchbooks.

The Arduino programming language is modeled after Processing, so thesetwo lan-

guages share lot of things. A complete introduction to Processing is outof scope here.

For a complete documentation on Processing you should have a look at theo�cial

documentation.

4.7.3 The �nal \video game"

By using the input information read from the Arduino and sending them to the Process-

ing application through the Serial communication, I implemented a very simple video

65

4. FIRST STEPS WITH ARDUINO AND ELECTRONIC
PROTOTYPING

gamewhich let you move a square into the graphics by pushing the various buttons on

the controller (�gure 4.30).

Figure 4.30: Multisensors controller demo

66

5

MEMS Sensors: accelerometers,

gyroscopes and magnetometers

Microelectromechanical systems (MEMS) are small integrated devices or systems that

combine electrical and mechanical components. They range in size from the sub mi-

crometer (or sub micron) level to the millimeter level, and there can be any number,

from a few to millions, in a particular system. MEMS extend the fabrication techniques

developed for the integrated circuit industry to add mechanical elements such as beams,

gears, diaphragms, and springs to devices.

Examples of MEMS device applications include inkjet-printer cartridges, accelerome-

ters, miniature robots, microengines, locks, inertial sensors, microtransmissions, mi-

cromirrors, micro actuators, optical scanners, uid pumps, transducers, and chemical,

pressure and ow sensors. New applications are emerging as the existing technology is

applied to the miniaturization and integration of conventional devices.

These systems can sense, control, and activate mechanical processeson the micro scale,

and function individually or in arrays to generate e�ects on the macro scale. The micro

fabrication technology enables fabrication of large arrays of devices, which individually

perform simple tasks, but in combination can accomplish complicated functions (63).

In the past decades advances in MEMS technologies made the fabrication of MEMS

technology based sensors possible and economically feasible so that nowadays many

consumer products now includes MEMS based sensors. Currently the most widespread

67

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

Figure 5.1: Magni�ed picture of a MEMS device - Micro mechanical elements are
clearly visible.

kind of sensors are MEMS based accelerometers but the past �ve years have also seen

the introduction of MEMS based gyroscopes and magnetometers.

In the following sections we will introduce what MEMS accelerometer, gyroscopes and

magnetometers measure and how they internally works.

5.1 The accelerometer

An accelerometer is a device that measures its proper acceleration, that is the phys-

ical acceleration experienced by it relative to a free-fall, or inertial, observer who is

momentarily at rest relative to the object being measured (64, 75).

This de�nition will be elaborated in the following sections.

5.1.1 Modelization of an accelerometer: a mass on a spring

The functioning of an accelerometer can be understood by thinking ofit as a mass on

a spring system (�gure 5.2). When the system is steady and no accelerations act on

the system, the mass will lie in theO point. When an accelerationa is applied to the

system, the mass will displace ofx from the origin O.

68

5.1 The accelerometer

As we know from the Newton's second law of motion, a massm which is accelerated

by an accelerationa will be subject to a force F = ma. As the mass is also connected

to the spring, the spring itself, following Hooke's law, will generate an opposite force

proportional to x so that F = kx where k is a constant dependent of the spring

characteristics called spring constant.

As the movements of the mass will always be constrained by the spring,we will have

that F = ma = kx and from this equation, by knowing k and m and by measuring on

our accelerometer the displacementx we can compute the external acceleration using

simply a = kx
m .

Figure 5.2: Mass on a spring model of a single axis accelerometer - On the left
the accelerometer is at rest while on the right an accelerationa is applied to it resulting
in a displacementx of the massm.

By doing so we have transformed the problem of measuring the externalacceleration

which acts on an accelerometer to simply measure the displacement of its internal mass,

something which is possible even on a very small MEMS accelerometer(50).

5.1.2 The accelerometer and gravity

Sometimes an accelerometer is wrongly described as a device which measures acceler-

ations. This is not entirely true: in the de�nition we gave in the section introduction

we said that it measures proper accelerations and we will show now what that means

by doing some simple examples.

Let's suppose to place our accelerometer in the outer space (�gure 5.3 A).If the ac-

celerometer is at rest, there are no forces nor accelerations acting on the accelerometer

69

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

and on its internal mass. We expect the accelerometer to read zero.

When we place the accelerometer on a space ship (�gure 5.3 B) accelerated by its

engines bya we will have a forceF = ma acting on the mass contrasted by the elastic

force of the springsF = kx. We expect our accelerometer to reada.

Figure 5.3: E�ects of gravity and external accelerations to an acceleromet er

Instead, if we let the accelerometer fall down under the e�ect of gravity and in absence of

frictions caused by the air (�gure 5.3 C) , the whole accelerometer will be accelerated by

an accelerationg (with g = 9 :80665m
s2). In such situation, called freefall, objects appear

to have no weight, so the mass inside the accelerometer won't cause any displacement

in the springs resulting in our accelerometer reading 0. This is a consequence of the

fact that Newton's laws show that a body in free-fall follows is an inertial system such

that the sum of the gravitational and inertial forces equals zero.

Finally, if we place our accelerometer at rest on the Earth (�gure 5.3 D), our ac-

celerometer will read a value ofa = g. This is because the weight of the massm will be

subjected to gravity resulting in a displacement of the mass towards the bottom of the

70

5.1 The accelerometer

accelerometer (just as in �gure 5.3 B). So, an accelerometer placed at rest on the Earth

will actually measure the normal force Fn acted by the ground on the accelerometer

case. The reason of this is that the accelerometer case, with respect to a free-falling

reference frame, is accelerating upwards.

With the above examples we demonstrated that an accelerometer is subject to the e�ect

of gravity thus:

� when placed at rest on Earth it will read an accelerationa = g.

� during freefall it will read an acceleration a = 0.

� if we are interested in coordinate acceleration (change of velocity of the device in

space) we have to remove gravity from the accelerometer output, doing what is

called gravity compensation.

� if we rotate the accelerometer, the e�ect of gravity on its internal mass will variate

with the rotation angle, giving a di�erent output with di�erent rotati on angle.

We can use this to implement tilt sensing with the accelerometer.

Tilt sensing with the accelerometer will be explored deeply in the next sections and

chapters.

5.1.3 MEMS accelerometers

A MEMS accelerometer consist of a silicon chip, into which the sensor and the sensing

structure are fashioned (see �gure 5.4). It is made entirely of siliconand is in two parts:

the �rst is a lump (often called the proof mass or seismic mass) suspended by means

of a spring formed at each end; and the second is a pair of �xed sensing electrodes that

enable the electronics to detect the movement of the lump relative to the surrounding

platform of silicon.

When the chip is subjected to an acceleration, the lump moves a little relative to the

chip and the �xed structures on it. The amount of movement depends onthe size of

the acceleration, the sti�ness of the springs, and the mass of the lump. When the lump

is deected, the electrical capacitance between it and the sensing structures on the chip

71

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

changes, and this change is detected by the electronics, which converts it to a value for

acceleration (28).

In a two or three axis accelerometer, this kind of structure is replicated, with the

opportune change of orientation, for each of the accelerometer axis so that ispossible

to detect accelerations on each one of them.

Figure 5.4: Detail of a typical MEMS accelerometer - Picture from (28)

5.2 The gyroscope

A gyroscope is a device used to measure angular motion (eg. angular velocity). There

are many kind of gyroscopes which operates following di�erent principles but in gen-

eral they can be grouped in two main categories: mechanical gyroscopes and optical

gyroscopes.

The simplest mechanical gyroscope (�gure 5.5), invented by Foucault in1852, is a

spinning wheel mounted in a gimbaled structure capable of assuming any orientation.

As the wheel is spinning, it has an high angular momentum which let the wheel maintain

its orientation nearly �xed when an external torque is applied to the structure.

Unfortunately, gimbaled and optical gyroscope are quite large in size and quite expen-

sive so, they are quite impractical for usage in small devices like mobile phones or mice.

Over the last few years, vibrating structure gyroscopes have been introduced, which

72

5.2 The gyroscope

Figure 5.5: A mechanical gyroscope - Picture from (67).

can be produced using MEMS techniques resulting in small, inexpensive but precise

devices.

5.2.1 Vibrating structure gyroscope

A vibrating structure gyroscope can me modeled as in �gure 5.6. A massm vibrates

through the dotted trajectory at a speed V . When the gyroscope is rotated, the mass

m is subjected to the Coriolis e�ect that causes a secondary vibration orthogonal to

the original vibrating direction.

The Coriolis force is given by ~FC = � 2m(~
 � ~V) where ~
 is the angular rate of rotation

and ~V is the velocity the massm is moving.

In a similar way to the accelerometer model, also the Coriolis force is opposed by an

elastic force produced by the springs surrounding the mass. Following Hooke's law,

this force will be de�ned as Fe = kx where x is the displacement andk is the system's

elastic constant. Fe will always be opposite toFC .

So, by measuring the displacementx, knowing the system elastic constantk and noting

that we will always have Fe = FC we can then calculate the angular rate
.

73

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

Figure 5.6: Model of a vibrating structure gyroscope - Note how the trajectory of
the mass displaces byx from its original position when subjected to a rotation. Gravity
does not a�ect this model.

5.2.2 MEMS gyroscope

The gyroscope model introduced in the previous section can be directly mapped into

a MEMS gyroscope. In �gure 5.7 a surface-micromachined vibratory rate gyroscope is

depicted.

Figure 5.7: Detail of a Surface-micromachined vibratory rate gyroscope - Picture
from (59).

Standard comb drive actuators are used to excite the structure to oscillate along one

in-plane axis (x-axis), which allows relatively large drive amplitudes. Any angular rate

74

5.3 The Magnetometer

signal about the out-of-plane axis (z-axis) excites a secondary motion alongthe other

in-plane axis (y-axis) (59).

This secondary motion causes the comb �ngers sensors to deect and thisdeections

is detected by the electronics, which convert it to the output of the gyroscope.

In a two or three axis gyroscope, this kind of structure is replicated, with the opportune

change of orientation, for each of the gyroscope axis so that is possible to detect angular

velocities on each one of them.

5.3 The Magnetometer

A magnetometer is a device used to measure the strength and/or direction of the

magnetic �eld in the vicinity of the instrument (72). Magnetometers, as any magnetic

sensitive device, are also subject to the inuence of Earth's magnetic �eld so that it's

possible to use them for calculating the device heading.

Magnetometers can be used in di�erent kind of applications ranging from geophysi-

cal surveys to handheld GPS navigation systems and thus are available using di�erent

technologies in di�erent sizes and costs depending on the speci�c application the mag-

netometer is used.

In size constrained applications, the Anisotropic Magnetoresistive (AMR) technology

o�ers good precision and small device size for a�ordable costs so it's currently one of

the most used technologies in handheld devices (6).

5.3.1 Anisotropic Magnetoresistive Sensor

Anisotropic Magnetoresistence is the property of a material in which a dependence of

electrical resistance on the angle between the direction of electric current and orienta-

tion of an applied magnetic �eld is observed (73).

This behavior is shown in �gure 5.8. A Permalloy thin �lm (NiFe) duri ng fabrication

has been deposited in a strong magnetic �eld (6) producing a magnetic �eld M on the

�lm. When the �lm is at rest and there aren't external applied �elds , the magnetic

75

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

Figure 5.8: Principle of operation for Magnetoresistive Sensors - Picture from
(22).

�eld M is parallel to the �lm and it's resistance is R. But, when an applied �eld H is

present, the magnetic �eld M gets deviated resulting in a di�erence of resistance �R

proportional to the angle betweenH and M .

Figure 5.9: Magnetoresistive transducers - Picture from (22).

The transducer is in the form of a Wheatstone bridge (Figure 5.9). The resistance,R,

of all four magnetoresistors is the same. The bridge supply,Vb, causes current to ow

through the resistors. A crossed applied �eld, H, causes the magnetization in two of the

oppositely placed resistors to rotate towards the current, resulting in an increase in the

resistance,R. In the remaining two oppositely-placed resistors magnetization rotates

away from the current resulting in a decrease in the resistance,R. In the linear range the

76

5.4 ADXL330: an analog 3-axis accelerometer

output becomes proportional to the applied �eld � V = SHVb. The range of linearity

of the transfer function is inversely proportional to the sensitivity(3, 20, 22, 35, 40).

Is possible to produce this kind of structure using micromachined techniques resulting

in very small sensors (�gure 5.10).

Figure 5.10: Magnetoresistive sensing element - Picture from (22).

5.4 ADXL330: an analog 3-axis accelerometer

The �rst sensor I used has been the ADXL330, an analog 3 axis accelerometer. It

contains a polysilicon surface micromachined sensor and signal conditioning circuitry

to implement an open-loop acceleration measurement architecture. The output signals

are analog voltages that are proportional to acceleration. The accelerometer canmea-

sure the static acceleration of gravity in tilt sensing applications aswell as dynamic

acceleration resulting from motion, shock, or vibration (9).

The ADXL330 main features are:

� XYZ 3-axis acceleration sensing

� � 3 g acceleration scale range

� 1.8 to 3.6 Volts single supply operation

77

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

� low power (180 uA at Vs = 1.8 V)

� selectable output bandwidth from 0.5 Hz to 1600 Hz (X and Y axes) and 0.5 Hz

to 550 Hz for the Z axis

� ratiometric sensitivity of around 300 mV
g

� very small 4mm x 4mm x 1.45mm package (9).

The ADXL330 has been chosen as it was a very well known accelerometer whose doc-

umentation and code examples were widely available. Moreover the fact that it has

been used with the �rst generation of the Nintendo Wii controller has been seen as a

complete proof of quality.

5.4.1 Wrong Buying: learning by making mistakes

Unfortunately, we didn't have any ADXL330 available at the University so I h ad to go

online and search for sellers of them. At that moment I hadn't actually an idea of what

exactly I was looking for, I barely knew that I needed to buy an ADXL330.

Usually, when there is the need of using a surface mounted device (SMD), a device which

comes in a package suitable only for soldering over a printed circuit board (PCB), a

very small PCB, called breakout board, is used. The breakout board simply breaks

out the pins of the SMD device into standard 0.1 inches pins so that its possible to use

them on a breadboard.

However, this whole breakout board thing wasn't actually known to me at the time of

buying the ADXL330. So, instead of buying a breakout board, for example the 30$

ADXL330 breakout board from Sparkfun (12) (�gure 5.11 A), I actually bought a raw

ADXL330 chip because it was cheaper, only 6$, and I simply assumed I was gettinga

breakout board.

Of course, I was really a beginner at that time and I had no idea that instead of getting

a PCB with easy to use 0.1 inches pins, I had actually bought a 4 mm x 4 mm IC

with 0.3 mm pins (�gure 5.11 B). The reader can imagine my face when I opened that

package and saw that tiny chip instead of an handy breakout board.

78

5.4 ADXL330: an analog 3-axis accelerometer

Figure 5.11: ADXL330 - A: Sparfun Electronics breakout board for the ADXL330. B:
A raw ADXL330 chip. Pictures from (12, 41).

At that point I was a bit discomforted about my mistake but, instead of dum ping the

chip, I went to the Arduino forum and asked if there was the possibility to use the chip

anyway. People there suggested that, by using a good magnifying glass andwith some

practice, it was actually possible to solder on those very tiny pads somewires doing

some kind of very primitive wire based breakout board. An user on the forum even

sent me some inspiring pictures of one of his attempts trying to solder on such tiny

chips. The whole procedure looked hard but possible.

So, I asked for help to my uncle which is a long time electronic hobbyists who provided

me with a professional soldering station and a magnifying glass with integrated lamp

(really similar to those used by dentists). With these tools I had everything needed to

solder directly on the ADXL330.

The result looked quite similar to �gure 5.12. With some patience and bydoing some

tests I've been able to solder all the needed wires on the pad of the ADXL330.

The real trick for somebody without a proper education on electronic engineering like

myself was actually understanding the ADXL330 datasheet which I have to admit

looked quite terrifying the �rst time I saw it. But, documenti ng myself on books and

online, I've been able to understand it and use it as a base for building the circuit to

use it with Arduino.

79

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

Figure 5.12: Tiny wires hand soldered to an SMD chip - This is actually an
ADXL345 but the process followed for the ADXL330 was the same.

Making this mistake and buying the wrong chip has been a great learningexperience

which let me experience with SMD soldering and prototyping for the�rst time. This

is something which has been crucial in the developments of the following months, as

we will see in the following chapters and sections.

5.4.2 Electronic schematics for using the ADXL330 with Arduino

Once the soldering of the tiny wires on the accelerometer was complete, I soldered

slightly bigger and more prototyping friendly wires to the smaller ones so that I could

use them on a breadboard. The electronic schematics used to connect the ADXL330

to Arduino is displayed in �gure 5.13.

The voltage supply pins (Vs, pins 14 and 15) have been connected to the 3.3 Volts pin

on the Arduino. The 0.1 � F capacitor C1 is used to decouple the accelerometer from

noise on the power supply. The various common pins (COM, pins 3, 5, 6 and 7)have

been connected directly into Arduino GND pin. The AREF pin on the Ard uino has

been connected to the 3.3 Volts power source in order to use that voltageas reference

to the ADC.

The accelerometer pins Xout, Yout and Zout (12, 10 and 8), whose serve as analogical

signal pins, have been connected respectively to Analog 0, 1 and 2 on theArduino.

80

5.4 ADXL330: an analog 3-axis accelerometer

Figure 5.13: ADXL330 and Arduino Schematics - Pins labeled with GND are con-
nected together

The bandwidth on these pins can be selected by adding capacitors to those pins. As

per the ADXL330 datasheet, the bandwidth follows this simple formula:

F =
5�F

CX;Y;Z

In order to reach the output bandwidth of 50 Hz and to clean the outputs from noise,

0.1 � F capacitors (C2, C3, C4) have been added to the outputs.

5.4.3 Reading data from the ADXL330

With the above connections, the analog-digital converter of the ATMEGA 328p can be

used to read the values from the accelerometer. The handyanalogRead() function,

which we introduced in section 4.3, can be used to read the analog value provided by

the accelerometer.

By executing analogRead() on the accelerometer output pins we will obtain a value

from 0 to 1023 proportional to the voltage read on the pin.

81

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

In order to convert the read value to something usable on our application,two things

must be done:

� zero g o�set calibration

� express the read value in g units

The zero g o�set calibration is used to understand which read value weobtain from

the accelerometer when the read acceleration is zero. Once the calibration is done, an

o�set is computed, which will be subtracted from the read value. This way we can

di�erentiate from positive and negative acceleration values.

The calibration o�sets can be obtained simply by rotating the accelerometer putting

each axis in the zero g position. This is a position in which the expected value is

zero which means placing the axis to calibrate to be perpendicular to gravity. The read

value in this position can then be used as zero g o�set. A more sophisticated calibration

procedure is explained in (37).

Finally, we can express the read value in g units by noting from the datasheet that the

accelerometer has a sensitivity of about 300mV
g when running at 3 Volts. As we are

running it at 3.3 Volts and the sensitivity is ratiometric, it is safe to assume a sensitivity

of 330 mV
g .

As the read value from the ADC is an integer from 0 to 1023, the AREF pin is connected

to 3.3 Volts and our sensitivity is 330 mV
g , the following holds true:

0:33V
3:3V

=
1g val
1023

() 1g val =
0:33V
3:3V

� 1023 = 102:3

This means that the read value from the accelerometer on the Arduino can be converted

into g units by dividing it by 102.3.

5.5 Digital sensors

After experiencing with the ADXL330, we started looking for additional sensors in order

to implement some orientation sensing capable device (more in the next chapters). We

needed to get a gyroscope and a magnetometer.

82

5.5 Digital sensors

I started documenting about what were the most adequate sensors available at that time

and it seemed that newly available sensors were more powerful and precise moreover

they were also digital and somehow intelligent.

I decided that the ADXL345 accelerometer, the ITG3200 gyroscope and the HMC5843

were good candidates that were widely used in other project thus well known while still

being quite new sensors. All these three sensors are completely digital, which means

that they do embed digital logic capable of converting the analog signal coming from

the mechanical components into digital values accessible using a digital communication

protocol. Moreover, they all provided di�erent con�gurable paramete rs which change

how the sensor internally work (eg: con�gurable sampling rate) as well ascon�gurable

interrupt conditions.

5.5.1 I 2C

The three sensors chosen communicates to an host microcontroller using I2C, a multi-

master serial single-ended computer bus invented by Philips semiconductor division

(now NXP) (68).

Figure 5.14: I 2C - example of connections

I2C uses only two bidirectional open-drain lines, Serial Data Line (SDA)and Serial

Clock (SCL), pulled up with resistors. Usually signal voltages used are+5 Volts or

+3.3 Volts although systems with other voltages are permitted. Devicesare connected

in parallel to both the SDA and SCL lines (�gure 5.14) and, as the wires are open-

drain, they can pull the lines low. Common speeds for the I2C bus are 100 kbit/s

(standard mode) and 400 kbit/s (fast mode) but other speeds (10 kbit/s, 1Mbit/s and

83

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

3.4 Mbit/s) are usable. Each device de�ne its own I2C speed capabilities which are

usually present in the device's datasheet.

Devices on the bus have two roles:

master issues the clock and addresses slaves.

slave receive the clock signal and the addresses sent by the master. Can communicate

replying to requests made by the master.

A detailed description of the I2C communication protocol is out of scope here. For

a detailed but informal and simple to understand description on it, the reader should

consult (24).

We can make however a communication example (�gure 5.15), just to give thereader

an insight on the protocol functioning.

Figure 5.15: Complete I 2C Data Transfer - Picture from (23)

After beginning communications with the START condition (S), the mast er sends a

7-bit slave address followed by an 8th bit, the read/write bit. The read/write bit

indicates whether the master is receiving data from or is writing to the slave device.

Then, the master releases the SDA line and waits for the acknowledge signal (ACK)

from the slave device. Each byte transferred must be followed by anacknowledge bit.

To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the

high period of the SCL line. Data transmission is always terminated by the master with

84

5.5 Digital sensors

a STOP condition (P), thus freeing the communications line. However, the master can

generate a repeated START condition (Sr), and address another slave without �rst

generating a STOP condition (P). A LOW to HIGH transition on the SDA line while

SCL is HIGH de�nes the stop condition. All SDA changes should take place when SCL

is low, with the exception of start and stop conditions (23).

5.5.2 Arduino and I 2C

The I2C communication protocol can easily be used in Arduino using the Wire library

(49) which provide relatively easy to use APIs for the protocol.

Figure 5.16: Arduino connected to two 5V I 2C devices - R1 and R2 pullup values
can range from 2K to 10K
.

On the Arduino Duemilanove, the SDA and SCL pins are respectivelyA4 and A5, so

that those pins have to be connected to the correspondent pins on theslave device

in order to use the I2C protocol (�gure 5.16). Pullups resistors have to be added

to the SDA and SCL lines: when connecting to 5 Volts devices, the pullups should

be connected to 5 Volts; when connecting to 3.3 Volts devices the pullup should be

connected to 3.3 Volts.

85

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

The Wire library by default enables the internal pullups of the microcontroller, which

should be disabled when external pullups are used. It's very important that the internal

pullups are disabled when connecting to a 3.3 Volts device as the internal pullups are

connected to the voltage the microcontroller is using (5 Volts on 16Mhz Arduino like

the Duemilanove), so that a 3.3 Volts device could get damaged when usedwith 5 Volts

signals.

5.6 Low cost, do-it-yourself method for making printed

circuit boards

As soon as we choose the sensors we were interested in using, I starteddocumenting

about the costs involved in buying breakout boards for those sensors. Prices were

ranging from 30$ to 50$. Unfortunately, at that time my university was under some

economical problems due to the cuts made by the Berlusconi government to the public

university. It seemed that getting founds for buying those sensorswas almost impossi-

ble.

So, it was clear that if I wanted to continue working on this thesis I had to buy those

sensors from my own pockets. Fortunately, as I had worked during all the university

years, I had some money saved which I could spend for buying the sensors. My budget

was however quite limited and I surely couldn't a�ord buying ready t o use breakout

boards for the sensors.

The fact that I was able to buy the bare sensors for only a fraction of the costs of

a commercial breakout board made me thinking about following the same soldering

procedure used for the ADXL330. However, as the pins under the sensors chosen

were very small, soldering below them would have been quite impossible: a di�erent

procedure was needed.

I started documenting on di�erent procedures to use surface mounting devices (SMD)

without professional tools and equipment and I found that there were some ways of

building a printed circuit board (PCB) at home using the same procedure used by

hobbyists.

The procedure consists in three main stages:

86

5.6 Low cost, do-it-yourself method for making printed circuit board s

� designing the PCB using an electronic design automation (EDA) tool

� physically build the design starting from a copper clad board

� solder SMD components on the PCB.

The above stages will be briey introduced in the following sections.

5.6.1 Designing a PCB with Kicad

The �rst step in building a PCB, is designing it. This is done by u sing a electronic

design automation (EDA) tool which helps the designer drawing the circuit schematics

and actual PCB using software aided tools.

There are many commercial EDA suites available, ranging from a hundreddollars to

thousands depending of how many advanced features available in the package. EAGLE

(18), an EDA suite by CadSoft Computer GmbH, is currently the most used PCB

design tool among hobbyists. In this thesis, I wanted to use only libre software, so

using EAGLE was not an option.

Figure 5.17: Screenshot of KiCad - In this picture from (60) the pcbnew component
of KiCad is being used.

87

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

I started documenting on libre software EDA suites and I found out that KiCad (�gure

5.17) (60), an electronic design automation released under the GNU GPL, was perfect

for my simple needs of PCB design.

KiCad, is organized in �ve main parts:

kicad the project manager.

eeschema the schematic editor.

cvpcb the footprint selector for components used in the circuit design.

pcbnew the PCB layout program which also has a 3D View.

gerbview the Gerber (photoplotter documents) viewer.

The process of designing a PCB using KiCad can be summarized in the following steps:

1. design the circuit schematics using eeschema

2. associate to each component of the circuit a footprint using cvpcb

3. use the schematics and the footprint association to design the actualPCB using

pcbnew

4. export the designs into a format suitable for printing or manufacturing the PCB.

A detailed description of how to design a PCB with KiCad is out of scope here. For all

the details the reader can consult KiCad website (60) and the documentation provided

in the software package.

5.6.2 Etching a PCB

After the PCB design is completed, the actual PCB has to be constructed. There are

di�erent procedures, but the press and peel sheets way seemedto be the most simple

and inexpensive to follow. The procedure involves using an etchant to etch out the

printed circuit from a copper clad board.

88

5.6 Low cost, do-it-yourself method for making printed circuit board s

Once the PCB design is ready, a printer friendly output is generated (eg PDF). Such

design is then printed mirrored into a press and peel (PNP) sheet using a laser printer

(�gure 5.18 1). The toner used by laser printers isn't actually ink, is rather a powder

which is settled on the paper by heating it.

Once the toner is on the PNP sheet it can be settled on any other surface by simply

heating it enough. If we place the PNP sheet above the copper clad board andthen

heat the PNP sheet enough by using an iron (�gure 5.18 2), then the toner will settle

on the copper clad board (�gure 5.18 3).

Figure 5.18: Etching a PCB using the PNP procedure - 1: press and peel sheets
printed. 2: ironing the PNP sheet on the copper clad board. 3: toner settled on the copper
clad board. 4: etching the PCB using ferric chloride 5: completed PCB. Pictures from (56)

The next step involves using ferric chloride (FeCl3) to etch the PCB. The board is

inserted into a container full of etchant (�gure 5.18 4). The etchant wi ll etch only the

copper which isn't covered by any toner thus leaving nicely formatted tracks on the

PCB. After about half an our the PCB etching is complete (�gure 5.18 5).

IMPORTANT: Ferric chloride is a potentially dangerous substance: follow adequate

safety measures when using it.

89

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

5.6.3 Soldering surface mounted devices on a PCB

Once the PCB has been produced the last step is soldering SMD devices on the PCB.

This can be achieved using di�erent procedures.

The simplest is placing solder on the contact pads of both the PCB and theSMD device

using a soldering iron with the help of ux. Components can be positioned on top of

their respective pads. The PCB can then be heated till the solder reow temperature

using a skillet or an hot air gun (�gure 5.19 top).

Another way is using solder paste, a gray sticky material, which can beapplied on the

PCB with the help of a stencil. Once the solder paste is applied thecomponents can be

positioned. The whole PCB can then be heated using an hot air gun or a pizzaoven till

it reaches the reow temperature. This heating process should follow the temperatures

explained by the solder paste manufacturer reow pro�le (�gure 5.19 bottom).

Figure 5.19: Reow soldering SMD devices on a PCB - Top images: reow soldering
using standard solder and skillet or hot air gun. Bottom images: solder pasteSMD reow
using a pizza oven. Pictures from (39, 56)

90

5.7 ADXL345: a digital 3-axis accelerometer

5.7 ADXL345: a digital 3-axis accelerometer

The ADXL345 is a 3-axis digital-output MEMS accelerometer produced by Analog

Devices. Its main features include:

� low power consumption: 40� A in measurement mode and 0.1� A in standby

mode (with V s = 2.5 Volts)

� high resolution (13-bit) at up to � 16 g

� selectable bandwidth

� embedded FIFO queue to minimize communication overhead

� SPI and I2C digital interfaces

� single and double tap detection

� activity and inactivity monitoring

� freefall detection

� con�gurable interrupts to two di�erent interrupt pins

The ADXL345 has been chosen as it was widely known, for the quality of the documen-

tation provided by Analog devices, for the presence of tap and double tap detection

and of course for its pretty good resolution.

5.7.1 Schematics and PCB designs for a breakout board for the ADXL345

A simple breakout board has been designed for the ADXL345 using KiCad. The

schematics are depicted in �gure 5.20: the breakout board simply breaks out the SDA,

SCL and INT1 pins from the ADXL345. The breakout board only supports I2C con-

nections. Both the Vs and Vdd pins have been connected to the same power source pin

with associated 0.1� F decoupling capacitors (C1 and C2). The various GND pins of

the ADXL345 have been connected to the GND of the breakout board.

91

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

Figure 5.20: ADXL345 breakout board schematics - The PWR FLAG components
are KiCad speci�cs for using ERC validation.

The SDO pin, if connected to logic HIGH or LOW changes the device addresson the

I2C bus. Such pin has been connected to a solder jumper (J1) so that theuser can

change between HIGH or LOW simply by connecting it to the needed logic level using

a soldering iron.

The actual PCB of the breakout board of the ADXL345 is depicted in �gure 5.21. A

two side PCB has been designed using KiCad and etched using ferricchloride. 0805

size capacitors have been chosen for C1 and C2. Note the presence of 4 vias which

connects the top layer with the bottom layer of the PCB. The copper tracks break out

into 0.1 inches spaced connectors.

5.7.2 Using the ADXL345

The ADXL345 breakout board can be connected to an Arduino as any other I2C device

(see �gure 5.16). The ADXL345 is a 3 Volts device so it should be connected tothe

3.3 Volts pin on Arduino.

The accelerometer responds to the 7-bits I2C addresses 0x1D (SDO connected to HIGH)

and 0x53 (SDO connected to LOW). Output data and various internal con�gurat ions

92

5.8 ITG3200: a digital 3-axis gyroscope

Figure 5.21: ADXL345 breakout board PCB - PCB design, Actual PCB top and
bottom views.

are available by reading or writing to its internal registers.

The most interesting registers are DATAX0 to DATAZ1 (0x31 to 0x37) whose provide

the 3-axis output acceleration, POWER CTL (0x2D) which controls the power settings

of the accelerometer and INTENABLE, INT MAP and INT SOURCE (0x2E to 0x30)

whose controls the various interrupt settings. A detailed description of the various

registers is available on the device datasheet (10).

5.8 ITG3200: a digital 3-axis gyroscope

The ITG3200 is a digital-output 3-axis MEMS gyroscope produced by Invensense. Its

main features include:

� XYZ axis angular rate sensors with a 14.375 LSBs per deg/sec sensitivity and a

full scale range of� 2000 deg/sec.

� integrated temperature sensor

� 6.5 mA operating current consumption

� 4x4x0.9 mm QFN package

� digitally programmable low-pass �lter

� I2C digital interface up to 400 KHz (23)

93

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

The ITG3200 has been chosen as it was the only I2C compatible 3-axis gyroscope

available at that time and it provided all the features needed.

5.8.1 Schematics and PCB designs for a breakout board for the ITG3200

A breakout board for the ITG3200 has been designed. Its schematics are reported in

�gure 5.22 and are based on the suggested connections from the datasheet (23). Vdd

and Vlogic pins have been connected together and broke out to the 3.3V pin of the

breakout board connector. SDA, SCL, INT and AD0 pins have been simply brokeout.

The various capacitors used follow the value suggested in the datasheet.No external

clock is used thus the CLKIN pin has been connected to GND. The AD0 pins allows

user con�gurable I2C address.

Figure 5.22: ITG3200 breakout board schematics

From the schematics in �gure 5.22 a simple breakout board PCB has been designed

(�gure 5.23). The PCB has a two side design with 0805 capacitors and a 0.1 inches

spaced connector and 5 vias which connects the top layer to the bottom layer of the

PCB.

94

5.9 HMC5843: a digital 3-axis magnetometer

Figure 5.23: ITG3200 breakout board PCB - PCB design, Actual PCB top and
bottom views.

5.8.2 Using the ITG3200

The ITG3200 can be accessed on the I2C bus using the 0x69 (AD0 connected to HIGH)

and 0x68 (AD0 connected to LOW) 7-bit addresses. After power up, the gyroscope

needs 70 ms to start functioning (50ms from gyro startup + 20ms register r/wstartup).

After this delay the output has to be con�gured by setting the sample rate and the

lowpass �lter bandwidth (registers SMPLRT DIV 0x15 and DLPF 0x16). Output data

from the temperature sensor and the XYZ angular rate outputs are available from

registers 0x1B to 0x22 stored as 16-bit 2's complement data.

A detailed descriptions of all the registers is available on the ITG3200 datasheet (23).

5.9 HMC5843: a digital 3-axis magnetometer

The HMC5843 is a digital 3-axis magnetometer produced by Honeywell. Its main

features are:

� 3-axis Anisotropic Magnetoresistive sensor with a 7 milli-gauss resolution and full

scale range of� 4 gauss

� 4 x 4 x 1.3 mm surface mount package

� current draw of 0.8 mA

95

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

� maximum output rate of 50Hz

� I2C digital interface (21)

The HMC5843 has been chosen as it was the only 3-axis magnetometer widely available

at the time of writing this thesis.

5.9.1 Schematics and PCB designs for a breakout board for the HMC5843

A breakout board for the HMC5843 has been designed using KiCad. The schematics

(�gure 5.24) are based upon the suggestions made in the datasheet (21, single supply

reference design) for a single supply connection.SDA, SCL and powerlines have been

broken out into a 0.1 inches connector. The value of the C1, C2, C3 capacitors follows

the recommendations in the datasheet.

Figure 5.24: HMC5843 breakout board schematics

From the above schematics a breakout board PCB has been designed using KiCad

(�gure 5.25). As usual, 0805 package capacitors and a 0.1 inches spaced capacitor have

been used.

It's important to note that the 4.7 � F C2 and 0.22 � F C1 have been chosen to have

low equivalent series resistance (ESR) as suggested by the HMC5843 datasheet.

96

5.10 9 degrees of measurement MARG sensor array on a breadboard

Figure 5.25: HMC5843 breakout board PCB

5.9.2 Using the HMC5843

The HMC5843 communicates on the I2C bus using the 0x1E 7-bit address. The sensor

provides a self test routine which can be used for a very simplistic calibration procedure.

The HMC5843 provides two con�guration registers (A and B - 0x00 and 0x01) whose

allows the user to set various relevant settings such as the output bandwidth (from 0.5

Hz to 50 Hz) and the gain settings.

Relevant data registers are 0x03 to 0x08: they provide 2's complement 16 bit values

(split into two 8-bit registers) for each axis. It's important to note that the HMC5843

will automatically wrap its internal pointer after reading register 0x08 again to 0x03

to ease the access to the data decreasing the I2C communication overhead.

5.10 9 degrees of measurement MARG sensor array on a

breadboard

By connecting the three breakout boards for the ADXL345, ITG3200 and the HMC5843

presented in the previous sections on the same I2C bus, it's possible to create a 9 degrees

of measurement (DOM - sometime incorrectly indicated as degrees of freedom - DOF)

magnetic, angular rate, gravity (MARG) sensor. The three breakout boards can be

connected in parallel on the I2C bus as depicted in �gure 5.26 and the three sensors

97

5. MEMS SENSORS: ACCELEROMETERS, GYROSCOPES AND
MAGNETOMETERS

can be accessed as usual. It's convenient to place the 3-axis sensors sothat their axis

are aligned. The resulting circuit, prototyped on a breadboard is depicted in �gure

5.27.

With this setup, is possible to start implementing various orientation sensing algorithms

which will be presented in the next chapter.

Figure 5.26: Schematics of a 9 DOM MARG sensor array using the ADXL345,
ITG3200 and HMC5843 breakout boards. - A logic level converter could have been
added to the schematics to avoid problems in case of a noisy connection.

Figure 5.27: A 9 DOM MARG sensor array using the ADXL345, ITG3200 and
HMC5843 breakout boards prototyped with Arduino.

98

6

Orientation Sensing

In the previous chapter I introduced the three sensors I used during this thesis, the

respective breakout boards designed and the most important programming aspects for

their usage.

In this chapter, I present the mathematical concepts and algorithms needed to fuse

the sensors output into progressive levels of orientation sensing. I'll start by using

only the accelerometer for a simple tilt sensing application and thenI'll gradually add

complexity till the implementation of a MARG sensor fusion algorithm for orientation

sensing.

6.1 Tilt sensing using an accelerometer

The output of a three axis accelerometer, as seen in section 5.1.2 is subject to gravity,

thus can be used for tilt sensing: we can compute the pitch, de�ned asthe angle between

the Xs axis and the horizontal plane, and the roll, de�ned as the angle between the Ys

axis and the horizontal plane (37).

6.1.1 Single axis tilt sensing

Let's start analyzing a simpler problem: the measurement of tilt using a single axis of

the accelerometer. As depicted in �gure 6.1, when an user holds an accelerometer (or

99

6. ORIENTATION SENSING

the device which contains it), the gravity force g is contrasted by the normal force Fn

so that g = F n . Our accelerometer measures proper accelerations so, as seen in section

5.1.2, it will actually measure the normal force acted by the user who holds the device.

When the user tilts the accelerometer by an angle� , the output of the accelerometer

Ax will be the projection of the normal force Fn on the X axis of the accelerometer.

��

��

��

�

������

�

Figure 6.1: Tilt measurement using a single axis accelerometer

Referring to basic trigonometry it's possible to demonstrate that, for an ideal value of

1g for gravity, the output acceleration is

Ax [g] = 1g � sin(�) (6.1)

Using (6.1) it's possible to estimate the tilt angle:

� = arcsin
�

Ax [g]
1g

�
(6.2)

Because this approach uses only a single axis and requires the gravity vector, the

calculated angle of inclination is accurate only when the device is oriented such that

the x-axis is always in the plane of gravity. Any rotation about the other axes reduces

the magnitude of the acceleration on the x-axis and results in error in the calculated

angle of inclination (15). In order to remove this constraint an accelerometer with more

sensing axis is needed.

100

6.1 Tilt sensing using an accelerometer

6.1.2 Tri-axis tilt sensing

With a three axis accelerometer, when the user tilts the accelerometer, the normal

force Fn will be projected on all the three sensing axis. The problem of determining

the pitch (�), the angle between the Xs axis and the horizontal plane, and roll (�), the

angle between the Ys axis and the horizontal plane (37) can be solved geometrically by

analyzing picture 6.2.

��

��

�� ��

��

��

�

�

�

Figure 6.2: Tilt measurement using a three axis accelerometer - � is the angle
between Xs axis and the horizontal plane, � is the angle between the Ys axis and the
horizontal plane and � is the angle between Zs and Zw .

With a simple trigonometric analysis we can obtain that:

pitch = � = arctan

0

@ Axq
Ay

2 + Az
2

1

A (6.3)

roll = � = arctan

Ayp

Ax
2 + Az

2

!

(6.4)

Similarly we can also compute� as the angle between the normal force and the Zs axis

of the sensor:

� = arctan

0

@

q
Ax

2 + Ay
2

Az

1

A (6.5)

101

6. ORIENTATION SENSING

6.1.3 Limitations of using only an accelerometer for tilt sensing

As seen, using an accelerometer for tilt sensing is simple and straightforward. However,

calculating tilt using only an accelerometer has some limitations. As the accelerometer

will also varies its output due to external accelerations, if the user moves rapidly the

device or if the device is being used in a vibrating environment (eg. in a car or a plane),

the pitch and roll angles that we'll compute with the formulas presented above will be

completely wrong and unreliable. Averaging various reading of the accelerometer can

helps �ltering out some external accelerations, but in general the formulas presented

are only reliable with the assumption of an almost steady device.

Another limitation is that, with only an accelerometer, it's not possibl e to have any

information on the yaw angle, de�ned as the angle between a �xed heading point (eg.

Earth North) and the X s axis of the device. This is a consequence of the fact that,

using only gravity as reference vector, any rotation of the device aroundthe gravity

vector won't produce any di�erence in the output of the accelerometer.

6.2 Fusing accelerometer and gyroscope data for reliable

tilt sensing

As seen, the method of determining tilt using only an accelerometersu�ers from errors

caused by external accelerations which sums to gravity and makes accelerometer based

tilt sensing unreliable in presence of external accelerations and vibrations. Gyroscopes

are much less subject to external accelerations and their angular rate output can be

trusted even in presence of external accelerations. In this section, I present a simple

algorithm adapted from (55, 57) which combines accelerometer and gyroscope datafor

tilt sensing so that its gravity vector output can be trusted even under the inuence of

external accelerations.

In �gure 6.3, the normal vector R is displayed with respect to the sensors frame. Axz is

de�ned as the angle between Rxz , the projection of R on the xz plane, and Z. Similarly,

Ayz is de�ned as the angle between Ryz , the projection of R on the yz plane, and Z.

102

6.2 Fusing accelerometer and gyroscope data for reliable tilt sensing

Figure 6.3: Normal vector R and projections angles - Picture from (57)

Let's suppose to sample data from the sensors each �t seconds. With the notation

a(n) we will indicate the quantity a at the n-th sample which should occurn� t seconds

from the beginning of the algorithm. The output of the algorithm will be ~Re(n) which

is the estimate of the normal force vector~R at the n-th sample.

A 3 axis gyroscope will measure the angular rate! around the X, Y, Z sensor axis and

we will indicate them as ! x , ! y , ! z, (this algorithm will only use ! x and ! y). If we

know the angle Axz (n � 1), we can use the gyroscope output to compute Axz (n) as

Axz (n) = Axz (n � 1) + ! y � � t (6.6)

The accelerometer will output it's measurement of ~R, indicated as ~Ra. As we are

also making samples from the accelerometer, we indicate them as~Ra(n). As initial

conditions we can simply assume that~Re(0) = ~Ra(0).

The key aspect of this algorithm is the derivation of ~Rg(n) which will be the estimation

of ~R computed from the gyroscope data which will use only~Re(n � 1) and ~! (n) as read

from the device.

Supposing to be at the n-1-th step of the algorithm, we would know ~Re(n � 1). By

103

6. ORIENTATION SENSING

looking at 6.3, we can computeAxz (n � 1) from ~Re(n � 1) with:

Axz (n � 1) = atan2(Re;x(n � 1); Re;y(n � 1)) (6.7)

where atan2 is a variation of the arctangent function de�ned as in (65).

As we already seen in equation 6.6, we can update the angle to its n-th value using

Axz (n) = Axz (n � 1) + ! y � � t (6.8)

In the same way we can computeAyz(n)

Ayz(n) = Ayz(n � 1) + ! x � � t (6.9)

Let's indicate Rg;x(n) with x, Rg;y(n) with y and ~Rg;z(n) with z in the following calcu-

lations. Assuming ~R normalized we can write:

x =
x
1

=
x

p
x2 + y2 + z2

(6.10)

By dividing both the numerator and denominator by
p

x2 + z2, we obtain:

x =
xp

x2+ z2
q

x2+ y2+ z2

x2+ z2

(6.11)

Note that xp
x2+ z2 = sin(Axz), so:

x =
sin(Axz)

q
1 + y2

x2+ z2

(6.12)

Multiplying numerator and denominator of fraction inside the square root by z2, we

obtain:

x =
sin(Axz)

q
1 + y2z2

(x2+ z2)z2

(6.13)

But, zp
x2+ z2 = cos(Axz) and y

z = tan(Ayz), so:

x =
sin(Axz)

p
1 + cos2(Axz) tan2(Ayz)

(6.14)

104

6.3 Tilt compensated digital compass

Going back to the initial notation, we obtain:

Rg;x(n) =
sin(Axz (n))

p
1 + cos2(Axz (n)) tan 2(Ayz(n))

(6.15)

Similarly, we can obtain:

Rg;y(n) =
sin(Ayz(n))

p
1 + cos2(Ayz(n)) tan 2(Axz (n))

(6.16)

The value of Rg;z(n) can be obtained as:

Rg;z(n) =
q

1 � Rg;x(n)2 � Rg;y(n)2 (6.17)

and the same sign ofRe;z(n � 1) can be used forRg;z(n).

Now, we have ~Ra(n) from the accelerometer and ~Rg(n) from the computation above.

We can fuse them into ~Re(n) using a weighted average as:

~Re(n) =
~Ra(n) � w1 + ~Rg(n) � w2

w1 + w2

=
~Ra(n) � w1

w1
+ ~Rg(n) � w2

w1
w1+ w2

w1

=
~Ra(n) + ~Rg(n) � wg

1 + wg
(6.18)

where wg = w2
w1

can be sized empirically to the practical applications. Usually values

from 5 to 20 produce good results.

By normalizing ~Re(n) we obtain the output of the algorithm.

6.3 Tilt compensated digital compass

As we seen in section 5.3, a magnetometer, as any magnetic sensitive device, is also

subject to the inuence of Earth's magnetic �eld so that it's possib le to use it to

calculate the device heading, intended as the angle between Earth's magnetic north

and the X sensing axis of the device.

Suppose to have a three axis magnetometer sitting on the local horizontal plane (the

plane normal to the Earth's gravity vector). With this assumption, th e e�ect of the

105

6. ORIENTATION SENSING

Earth's magnetic �eld would impact only the X and Y axis of the magnetometer (we are

not taking into account the inclination of the magnetic �eld). With the se assumptions,

we can compute the device heading () simply using:

heading = = atan2(Yh ; X h) (6.19)

where with Yh and X h we indicate the device's X and Y axis when it's sitting on the

horizontal plane.

When the three axis compass is tilted, pitch and roll angles are not zero(�gure 6.4)

and a more complex approach than equation 6.19 is needed.

�������
��	�
�

�
	�� �
��
���� �����

���	�
��
��

���� ����
�

��

��

Figure 6.4: A tilted compass - Pitch and roll angles have to be taken into account
when calculating heading. Picture from (7)

When the compass tilted with roll (�) and pitch (�) tilt angles referenced respectively

as the angles between the Y and X axis and the horizontal plane. The X, Y, and Z

magnetic readings can be transformed to the horizontal plane (X h and Yh) by applying

the rotation equations 6.20 and 6.21. If these equations are not used, then appreciable

errors will result in the heading calculations (7).

X h = X � cos(�) + Y � sin(�) � sin(�) � Z � cos(�) � sin(�) (6.20)

Yh = Y � cos(�) + Z � sin(�) (6.21)

Once we haveX h and Yh we can simply compute the heading () using equation 6.19.

Of course, as this simple sensor fusion of magnetometer and accelerometer data doesn't

make use of a gyroscope, this approach is also subject to the same problem ofthe tilt

106

6.4 Accelerometer, gyroscope and magnetometer fusion for orientation
sensing

sensing using only an accelerometer. As the accelerometer will sense accelerations plus

gravity, this approach is only accurate assuming an almost steady device.In presence

of external accelerations, this approach will fail giving incorrect heading information.

The reader may think about using the gyroscope+accelerometer gravitysensing al-

gorithm presented above as source of pitch and roll to feed into equation6.20. This

approach, even if possible, wouldn't be optimal, both in term of performance and ac-

curacy. In the next section, a better algorithm for sensor fusion is discussed.

6.4 Accelerometer, gyroscope and magnetometer fusion

for orientation sensing

As seen in the previous sections, by fusing the data from di�erent kind of sensors (ac-

celerometers, gyroscopes and magnetometers), it's possible to sensibly increase the re-

liability of the orientation sensing capabilities of the algorithms. I already presented al-

gorithms to fuse accelerometer and gyroscopes as well as magnetometer and accelerom-

eter. In this section I present an algorithm which, by fusing the data coming from the

whole MARG sensor, is capable of 3 degrees of freedom orientation sensing, thus can

compute yaw, pitch and roll of the sensor frame with respect to the world frame.

The algorithm is based on the work by Robert Mahony et al (1, 13, 33, 34), especially

(33), originally developed for usage on unmanned aerial vehicles, whose �rst publicly

available implementation has been done by William Premerlani et al (44),known as

the DCM �lter . The algorithm has been then extended by Sebastian Madgwick to

incorporate the magnetic distortion compensation algorithms from his �lter (31).

The actual code I used is based on a reference quaternion implementation made by

Madgwick which has been adapted to our sensors and Arduino APIs by myself. To my

knowledge, this orientation �lter represent the current state of t he art in orientation

sensing, being a very accurate but fast algorithm which can be implemented even on

low cost microcontrollers like the ATMEGA 328p in the Arduino. A good in troduc-

tion to the basic concepts used in the algorithm is available in (44). Thealgorithm

uses quaternions to represents rotations: a good introduction to using quaternions to

represent rotation is available in (43) and (32).

107

6. ORIENTATION SENSING

6.4.1 Orientation from angular rate

As seen in the previous chapter, a gyroscope will measure the angular rates about the

x, y and z axes of the sensor frame, termed! x , ! y and ! z. If these rates are arranged

in a vector S! de�ned as:
S! = [0 ! x ! x ! z] (6.22)

then it's possible to describe the rate of change of orientation of the earth frame relative

to the sensor frame as the quaternion derivative

S
E _q =

1
2

S
E q̂
 S! (6.23)

where
 is the quaternion product determined using the Hamilton rule (32).

Let's suppose to sample gyroscope readings with a sample period �t, S! n will be the

n-th sample which will occur at n� t. Supposing to know the initial orientation S
E q̂e;0,

we can compute the estimated orientation of the earth frame relative to the sensor

frame at the n-th sample, S
E q̂e;n , by numerically integrating S

E _qn as (31):

S
E _qn =

1
2

S
E q̂e;n� 1
 S! n (6.24)

S
E q̂e;n = S

E q̂e;n� 1 + S
E _qn � � t (6.25)

This approach, even if correct in theory, won't be accurate practically. Gyroscope

drifting and numerical errors in the integration will progressively add drifting to the

computed orientation estimate making this approach inadequate when used with low

cost MEMS gyroscopes. The idea behind the sensor fusion algorithm is touse observa-

tions of gravity and earth's ux vectors obtained respectively from th e accelerometer

and magnetometer to compute an adjusted measurement ofS! , which we'll call S! a,

to limit the e�ects of drifting in the orientation estimate.

6.4.2 Algorithm inputs and outputs

From a 9 DOM MARG sensor array, we can obtain the following measurements:

� S! : the angular rate about the x, y and z axes of the sensor frame,

108

6.4 Accelerometer, gyroscope and magnetometer fusion for orientation
sensing

� Sa: the projection of the gravity vector and external accelerations on theaxes of

the accelerometer,

� Sm : the projection of earth's ux vector on the axes of the magnetometer.

With Sâ and Sm̂ we will indicate the extension of the three elements vectorsSa and
Sm with a fourth element 0 placed on the head of the three element vector. This

extension will simplify operation with quaternions.

We can considerS! , Sa, Sm as the inputs to our algorithm. The output will be S
E q̂e;n

6.4.3 Algorithm step

Let's suppose to have just completed then � 1-th step of the algorithm. Then we would

know S
E q̂e;n� 1. As we know that the gravity vector is always normal to the ground plane,

we can compute the estimated direction of the gravity vector in the sensor frame from
S
E q̂e;n� 1 using:

Sv̂n� 1 = E
S q̂e;n� 1
 E v̂
 E

S q̂�
e;n� 1

= S
E q̂�

e;n� 1
 E v̂
 S
E q̂e;n� 1 (6.26)

Let's suppose to also know the earth's magnetic �eld vectorE b̂. With the same ap-

proach used above we can express the estimated direction of the magnetic �eld vector

in the sensor frame fromS
E q̂e;n� 1 using:

Sb̂n� 1 = E
S q̂e;n� 1
 E b̂
 E

S q̂�
e;n� 1

= S
E q̂�

e;n� 1
 E b̂
 S
E q̂e;n� 1 (6.27)

We can express the error made between the estimated orientation and the correct one

as the cross product between reference direction of �elds and direction measured by

sensors:

en = San � Svn� 1 + Sm n � Sbn� 1 (6.28)

We can track the errors done in the various steps by integratingen :

S(en) = S(en� 1) + en � ki (6.29)

109

6. ORIENTATION SENSING

where ki is the integral gain which governs rate of convergence of gyroscope biases.

We can now computeS! a
n , the adjusted gyroscope readings, as:

S! a
n = S! n + en � kp + S(en) (6.30)

where kp is the proportional gain which governs rate of convergence to accelerometer

and magnetometer.

Finally, we can compute the algorithm output as:

S
E q̂e;n = S

E q̂e;n� 1 +
�

1
2

S
E q̂e;n� 1
 S! a

n

�
� � t (6.31)

6.4.4 Magnetic distortion compensation

In the previous section we assumed to know the earth's magnetic �eldvector E b̂ which

we used as reference to computeen . But this is not the case as the magnetic �eld can

be distorted due to inferences and magnetic �eld inclination.

The measured direction of the earth's magnetic �eld in the earth frame at the n-th

sample, E ĥn , can be computed as the normalized magnetometer measurement,Sm̂ t ,

rotated by the estimated orientation of the sensor provided by the �lt er:

E ĥn = [0 hx hx hz] = S
E q̂e;n� 1
 Sm̂ n
 S

E q̂�
e;n� 1 (6.32)

The e�ect of an erroneous inclination of the measured direction earth'smagnetic �eld,
E ĥn , can be corrected if the �lter's reference direction of the earth's magnetic �eld,
E b̂n , is of the same inclination. This is achieved by computingE b̂n as E ĥn normalized

to have only components in the earth framex and z axes:

E b̂n = [0
q

h2
x + h2

y hx hz] (6.33)

Compensating for magnetic distortions in this way ensures that magnetic disturbances

are limited to only a�ect the estimated heading component of orientation (31).

110

7

FreeIMU

In section 5.10, I presented a 9 degrees of measurement solution based on three sep-

arate breakout boards for the ADXL345 accelerometer, the ITG3200 gyroscope and

the HMC5843 magnetometer. A breadboard has been used to prototype a magnetic,

angular rate, gravity (MARG) sensor array which can be used to implement orientation

sensing algorithms, as seen in chapter 6.

In �gure 5.27, we can see that the size and connection complexity of this solution is

quite relevant. It can works for prototyping the various algorithms and software but

it surely poses quite some limitations when the same sensors have tobe used inside a

small device like a mouse or a remote controller. When I started trying using the same

setup inside a size constrained device, it became clear that a smaller and integrated

solution was needed.

At that time, there were no commercial boards incorporating a 9 degreesof measure-

ment board having new generation I2C based sensors. The available products used all

analog sensors and were quite limited in precision and features. From the experience

obtained from the design of the various breakout boards, I had all the knowledge to

develop an integrated solution for a 9 degrees of measurement MARG sensor board.

In this chapter, I present FreeIMU, a 9 degrees of measurement board Idesigned and

built. FreeIMU incorporates the ADXL345 accelerometer, the ITG3200 gyroscope and

the HMC5843 magnetometer on a single and small printed circuit board.

111

7. FREEIMU

7.1 Dorkbot PDX group PCB buying service

When I designed the various breakout boards described in the previouschapters, I used

the do-it-yourself method of using ferric chloride to etch the PCB out from a copper

clad board (section 5.6). As seen, this simplistic approach works well on simple PCB

designs but it surely has quite some big limitations when used in more complex designs.

Etching a PCB for a three sensors board like FreeIMU wasn't a viable solution.

There are many companies which can fabricate professionally constructed PCBs from

an EDA tool like KiCad. Professionally constructed PCBs can use small tracks and

vias size, allowing to squeeze even complex designs into small PCBs. Usually, the PCB

design software has an export feature which outputs Gerbers �les, the�les used by many

photo-plotters used by these companies in the manufacturing process of the actual PCB.

Producing PCB in small quantities for prototyping is however quit e expensive. The

manufacturer has various �xed costs in setting up the PCB for manufacturing which

adds up a lot to the �nal price of the PCB prototypes.

As we still were short on budget, basically no budget at all from the University, I had to

�nd a di�erent solution for making small quantities of professionally m ade PCBs. The

solution arrived when I found Dorkbot PDX, a group of electronics hobbyists located

in Portland, Oregon USA. As they were a big number of people making their own

PCB designs, they were organizing a monthly group PCB order from a local USA PCB

manufacturer. By merging all the various designs of the di�erent PCBs in the order,

they where able to produce a big panel (�gure 7.1) containing all the various designs.

Building a big panel instead of small PCBs singularly considerably lowers the per PCB

costs lowering the entry price for professionally built PCBs.

The Dorkbot PDX service has been crucial for having FreeIMU PCBs fabricated at

an a�ordable prices. I'm sure that this kind of services will open many possibilities in

developing community driven hardware projects.

112

7.2 FreeIMU version 0.1

Figure 7.1: A PCB panel from the Dorkbot PDX group order - Various PCB
designs have been merged into a big panel. Picture courtesy James Neal.

7.2 FreeIMU version 0.1

FreeIMU version 0.1, the �rst FreeIMU board developed, uses the ADXL345 accelerom-

eter, the ITG3200 gyroscope and the HMC5843 magnetometer trying to keep the PCB

schematics and designs as simple as possible.

The hierarchic schematics in �gure 7.2 describe all the connectionsof FreeIMU version

0.1. The three sensors have been connected in parallel on the I2C bus and on the power

and ground connections. An attentive reader will note how the per chip schematics

are very similar to the one used on the various breakout boards. The new elements

are the C10 10� F capacitor, used to stabilize the power to the PCB, and the two

solder jumpers J1 and J2, used to set the alternative addresses of theaccelerometer

and gyroscope.

From the schematics, the actual PCB has been designed, trying to minimize the size

of the whole design. As usual, 0805 capacitors and a 0.1 inches connector have been

used. A package A tantalum capacitor has been chosen for the C10 10� F capacitor.

Two handy mounting holes have been added to the design. The sensors axis have been

aligned to ease data processing and sensor fusion. Soldering has been done with solder

paste, a plastic stencil and a pizza oven.

113

7. FREEIMU

Figure 7.2: FreeIMU v0.1 Schematics - This is the hierarchic schematics FreeIMU
v0.1.

114

7.3 FreeIMU version 0.2

The result of the PCB design is a 38.5 x 23 mm PCB which, once assembled with the

respective components, weights about 10 grams (�gure 7.3). In order to useFreeIMU

version 0.1, it has to be connected to a 3.3 V power source and to the I2C bus: as there

are no pullups integrated on FreeIMU v0.1, external pullups have to be added.

Figure 7.3: FreeIMU v0.1 PCB - KiCad designs and a picture of a built FreeIMU v0.1

7.3 FreeIMU version 0.2

In FreeIMU version 0.1 there isn't any voltage level regulator and no pullup resistors

for the I2C bus. When used on a 5 V microcontroller it has to be connected to a 3.3V

power source and external pullups have to be added.

This can cause some problems because the logic level voltages used by the3.3 V sensors

are 3.3 V too and the sensors don't tolerate higher voltages. This can pose problems

if FreeIMU is connected to a 5 V Arduino and internal pullups of the ATMEGA 328p

are enabled. This means that the sensors will receive 5 V signals which can cause

irreparable damages to them.

The ATMEGA 328p running at 5 V will take any voltage higher than 2.5 V as a logic

HIGH, so an I2C bus pulled up to 3.3 V should work without problems. However,

when there is noise on the bus, for example caused by a motor running nearby, the

delta between 2.5 V and 3.3 V is too small and can cause communications problems. I

115

7. FREEIMU

personally experienced occasional hangs of the I2C bus due to noise in the communi-

cation line.

This potential issues have motivated me in designing FreeIMU version 0.2 whose schemat-

ics are depicted in �gure 7.4. A MIC5205 (36), a 3.3 V voltage regulator, has been

added with the associated capacitors to provide a stable and regulated power source to

the sensors. A logic level converter, the PCA9306 from NXP (52), has also been added

to translate 5 V signals coming from the ATMEGA 328p into 3.3 V signals used by

the sensors. The addition of the LLC also added the possibility of embedding pullups

resistors in the PCB itself which can be enabled or disabled using solder jumpers JP1

and JP2.

With these additions there are now two logic levels and power sourceson the board.

This make possible to use two di�erent connectors, one running at 3.3V (P1) and one

running at 5 V (P2). With this connectors, it's possible to connect a 5 V Arduino

directly into the 5 V connector without any additional pullup resist or or logic level

converter. The presence of a 3.3 V connector make it possible to also use FreeIMU

with 3.3 V microcontrollers. Another possibility is using it to add ot her 3.3 V devices

to the same I2C bus.

Figure 7.5 shows the PCB design as well as some pictures of FreeIMU version 0.2.

As usual, 0805 capacitors and resistors have been used a part from C11 and C12, the

capacitors needed by the voltage regulator, which are tantalum capacitors inpackage A.

The PCA9306 has been chosen in package SO-8 and the MIC5205 in package SOT23-5.

7.4 Making FreeIMU a libre hardware project

During the development of FreeIMU, I made constant posts on my personal website,

updating on the status of the project and constantly releasing the various revisions of

the schematics and designs of FreeIMU. This generated quite a big interest on FreeIMU

as well as some suggestions from people working on the same kind of sensors.

When the designs have been completed, I published them under a creative commons

license CC-BY-SA which allows users to study and modify FreeIMUdesigns freely.

116

7.4 Making FreeIMU a libre hardware project

Figure 7.4: FreeIMU v0.2 Schematics - This is the hierarchic schematics FreeIMU
v0.2.

117

7. FREEIMU

Figure 7.5: FreeIMU v0.2 PCB - KiCad designs and top and bottom pictures of a
built FreeIMU v0.2

Figure 7.6: FreeIMU v0.1 mounted on a quadcopter - FreeIMU is used as an AHRS
for stabilization of the multi rotor.

118

7.5 Competing commercial products

FreeIMU is currently being used as base for many various projects. I'm aware of it

being used for freebie tracking, multicopter stabilization 7.6, humanmotion tracking

as well as human computer device prototyping.

I'm currently aware of two children projects based on FreeIMU. Oneinvolves adding

an ATMEGA 328p to produce an intelligent 9 DOM board capable of being chained

with other peer boards for using in human body movement tracking. Another project

involves adding an ATMEGA 328p and a Bluetooth module building a wireless orien-

tation sensing device.

7.5 Competing commercial products

Just a couple of weeks after I published on my personal website the schematics and

PCB designs of FreeIMU, Sparkfun Electronics, a Boulder, Colorado based company

released a very similar board based on exactly the same sensors used in FreeIMU.

Figure 7.7: 9 Degrees of Freedom - Sensor Stick - The board made by Sparkfun
Electronics with the same sensors used in FreeIMU.

The product is called 9 Degrees of Freedom - Sensor Stickand is available for about

70 euro (without customs and shipping costs). It features the same sensors used in

FreeIMU, it has an integrated voltage regulator and pullup resistors and it's slightly

smaller than FreeIMU.

This board however presents some design issues. The accelerometerhas been placed far

from the mounting hole and the PCB is 0.8 mm thick: this can cause problems as when

mounted on a case it's probable that the accelerometer will oscillate due to external

119

7. FREEIMU

vibrations surely decreasing its accuracy. This issue may give very poor results when

used in a motorized object such as a quad-rotor.

Another issue could be the complete absence of interrupt pins for thesensors which

haven't been broke out to the PCB connectors. This surely limits the possibilities of

the board which can't take advantages of the interrupt based features of the ADXL345

accelerometer (eg. single and double tap detection). The absence of interrupt pins

also constrains the programmer in using only I2C polling based sensor reading while

an interrupt based approach could be useful especially at higher sampling rates.

The last issue is that the magnetometer axis haven't been aligned to the other two

sensors axis. By doing so they have been able to make the board slightlysmaller. This

misalignment is �xable in software but adds avoidable complexity for the user without

a clear advantage.

120

8

Palla

In the previous chapters I introduced Arduino prototyping, orientat ion sensing algo-

rithms for magnetic, angular rate and gravity (MARG) sensors and presented FreeIMU,

an integrated MARG sensor PCB capable of orientation sensing.

In this chapter, all these topics will be glued together into Palla, a prototype of a

spherical tangible user interface capable of orientation sensing, single and double tap

detection, user hand proximity measurement, vibration feedback and wireless commu-

nication to the PC.

8.1 Previous works

During my bibliographical research among scienti�c publications, proceedings, books

and websites I wasn't able to �nd any previous work on MARG sensors powered orien-

tation sensing capable tangible user interfaces.

Traditionally, orientation sensing in tangible prototypes has been mostly powered by

some kind of computer vision techniques, eg (14, 17, 26, 42). The usage of MARG

sensors, probably due to the relative recent introduction of such sensors, seems to be

quite limited or non existent.

There are however tangible user interface prototypes based on accelerometers only

orientation sensing. The most notable works are the Tangerine SMCube (4, 5), which

121

8. PALLA

also have vibration feedback for the user, the Display Cube (25) which uses the rotation

data to visualize information to the user using an embedded LCD, and Gizmo (16) a

tangible cube capable of orientation sensing for browsing architectural designs. Perhaps

the most similar work is the Cubic Mouse (17), a 6 DOF sensing capable cubical tangible

user interface developed for visualizing car designs.

The lack of MARG sensors approaches in orientation sensing for tangible user interfaces

makes Palla a relevant contribution in the �eld.

8.2 Palla's schematics

Palla's schematics are reported in �gure 8.1. Palla contains a regular Arduino Duemi-

lanove (U2) which is powered by a 9 Volts battery (BT1) activated by a switch (SW1).

Arduino's internal voltage regulator will provide a 5 Volts source on its 5V pin.

A FreeIMU version 0.2 is connected using its 5 Volts connector to Arduino 5V and GND

as well as on the I2C bus on pin A4 and A5. Voltage level conversion from Arduino's 5

Volts signals and FreeIMU 3.3 Volts internal signals will happen in the PCA9306 (52)

logic level converter embedded into FreeIMU v0.2.

Figure 8.1: Palla's schematics

122

8.3 Building Palla

A Bluetooth Mate Gold from Sparkfun Electronics (11) is used as Bluetooth module

which enable wireless serial communication to a Bluetooth capable computer. The

Bluetooth Mate Gold already has its own circuitry for voltage regulation and logic

level conversion so it can be simply connected to a 5 Volts source and the TX and RX

pins on the Arduino.

A light dependent resistor (LDR - R1) has been connected in series with a 10K
 resistor

(R2) implementing a voltage divider circuit (as seen in 4.3.1 and 4.3.3.2)which varies

its output voltage depending on the amount of light detected by the LDR. The variable

voltage between R1 and R2 is available for reading on the Arduino by connecting A0

between the two resistors.

A simple DC brushed motor (M1) is used as actuator for the vibration feedback. The

motor is activated from Arduino by using a transistor (Q1) through a 1K
 res istor

(R4). The motor is connected to 5 Volts and a diode (D2) which serves as protection

against Back Electromagnetic Flux (BEMF) voltage harming the transistor (8).

Finally an LED (D1) has been connected to Arduino through a 1K
 resistor (R 3).

This LED can be used as status or feedback indicator.

8.3 Building Palla

In order to simplify the building of the circuit described above, a perfboard has been

used to create a very simple Arduino Shield (3.2.1). The shield uses 0.1 inches spaced

female connectors which have long legs which can permits stacking the shield above

the Arduino. The various wires have been soldered to the perfboard andthe shield

connectors (�gure 8.2 A). Regular 1/4 W resistors have been used for the various

resistors. For the LDR a VT90N2 has been used while the transistor is a BC547in

TO92 package. FreeIMU v0.2 and the Bluetooth module are connected intofemale

connectors (�gure 8.2 B).

The practical construction of Palla consisted in using a 10 cm diameterrigid plastic

ball. A 9 Volts square battery and a on/o� switch have been �xed on the bott om of

one of the semi-spheres (�gure 8.2 C). On the other semi-sphere a pager motor has

123

8. PALLA

been placed. On the motor axle, a non balanced weight has been mounted: this weight

produces a vibration when the motor rotates (�gure 8.2 D).

On top of the battery an Arduino Duemilanove has been �xed. Above of it the shield

can be mounted and then connected to the motors and the other components (�gure

8.2 E). When the two semi-spheres are closed together, Palla is complete (�gure 8.2 F).

Figure 8.2: Palla prototype - A: bottom of the Arduino shield developed with all the
Palla connections. B: Top of the Arduino shield: FreeIMU, the Bluetooth Mate, the diode,
the LDR and the LED are visible. C: bottom semi-sphere with a 9 Volts PP3 battery
and the switch. D: vibration motor with unbalanced weight. E: Arduino an d the shield
mounted inside of Palla. F: �nal prototype.

8.4 Palla capabilities and possible usages

Palla, by fusing the FreeIMU sensors outputs and fusing them usingthe algorithm

presented in section 6.4 can sense its orientation precisely in thespace. By using the

interrupt based features of the ADXL345 accelerometer included in FreeIMU, Palla can

also sense per axis single and double taps.

Palla's LDR will variate it's resistance when covered by shadows in aluminous envi-

ronment and thus can be used to sense the proximity of the user hand.The motor and

124

8.4 Palla capabilities and possible usages

the status LED enable physical and visual feedback for the user.

Palla can then be used in various kind of tangible user interface applications. Palla

can be manipulated directly by holding it or it can be rotated or rolled on a plane

surface. As it is completely wireless and self contained it can be used by multiple users

in collaborative applications.

Its orientation sensing capabilities are particularly suited for using in three dimensional

user interfaces. In �gure 8.3, Palla is being used to control player view in a �rst person

shooter game. Palla is particularly suited as a tangible user interfacefor browsing three

dimensionally structured data. Examples of such data could be chemical molecules,

DNA structures, geographical maps, 3D CAD designs, etc.

Figure 8.3: Palla in 3D environments - Palla used as controller in a FPS game.

125

8. PALLA

126

9

Femtoduino

In chapter 7 I presented FreeIMU, an integrated solution for a 9 degreesof measurement

MARG sensor array. The main reason for developing FreeIMU instead of using the

already developed breakout boards was the unpractical size and complexity of the

prototype. Using the three di�erent breakout boards in the Palla protot ype would

have been quite impossible.

In fact, the prototype size is a limitation in many projects: there are many applications

in which a prototype as big as an Arduino Duemilanove is simply too bigand it's not

a viable solution. There are however smaller Arduino compatible boards, such as the

Arduino Nano or the Arduino Pro Mini. These boards however are still too big for

many applications.

In this chapter, I present Femtoduino, a very tiny Arduino compati ble board especially

designed for ultra-small prototyping. Femtoduino is only 20.70 x 15.24 millimeters

in size for only 2 grams of weight, making it the smaller an lighter Arduino board

currently available while it can deliver exactly the same computing power of the Arduino

Duemilanove or UNO.

9.1 Schematics

Femtoduino schematics have been based upon the Arduino Nano, Pro Mini and UNO

schematics. As with Femtoduino the goal was to extremely reduce thesize of the board,

127

9. FEMTODUINO

a very minimal approach has been followed when adding components to itselectronic

design.

Fetmduino uses the QFN 32 version of the ATMEGA 328p, exactly the same microcon-

troller used in the Arduino Duemilanove or UNO but it comes in a very small 5 x 5 x 1

mm 32 pins package. The microcontroller is marked as component IC1 on the schemat-

ics. Peculiar of such package is the presence of a big conductive pad below it which

has to be connected to ground: the pad has been marked as 33 in the microcontroller

design.

The microcontroller has been connected to a resonator (Q1) which provides a 16 or

8 MHz square wave signal which serves as clock. When a 8 MHz clock is used, the

microcontroller can be powered by 3.3 V. Instead, when used with an 16 MHz clock ,

the microcontroller has to be connected to a 5 V power source.

The various input/outputs of the microcontroller have been broke into the P1, P2 and

J2 connectors. 0.1� F decoupling capacitors have been added to the AREF pin and

to the power connections. Following Arduino convention top have an LEDon board

connected to digital 13, an LED has been connected in series with a resistor to the

SCK pin.

The reset switch group, implements a simple pullup for the resetpin of the microcon-

troller: by closing the SW1 switch pulling down the reset pin it's possible to reset the

microcontroller. The same result can be achieved by bringing the DTR connector to

HIGH.

The voltage regulation follows the same design used in FreeIMU v0.2. The MIC5205

voltage regulator and three capacitors (C1, C2 and C3) deliver a stable powersource

to the microcontroller. Depending on the needed clock frequency (8 or 16 MHz) a

3.3 or 5 V marked MIC5205 regulator has to be used. The voltage regulator can

provide a current up to 150mA. In parallel to the voltage regulator output, a LED

and its associated resistor has been connected (R1 and D1): this LED serves as power

indicator.

128

9.1 Schematics

Figure 9.1: Femtoduino Schematics

129

9. FEMTODUINO

9.2 PCB desing

The main goal of Femtoduino is a very small size: any decision during the design of

the PCB has been towards keeping its size as small as possible.

As already said, the microcontroller used is the ATMEGA 328p in the QFN32 package

which is currently the smallest microcontroller of that microcontroller series available.

As the package is only 5 x 5 millimeters this dramatically reduce the whole size of the

PCB.

On standard sized PCBs for prototyping, the connectors are usually 0.1 inches spaced.

In Femtoduino instead, 0.05 inches spaced connectors have been used, so that the space

occupied by them is an half of that of a 0.1 inches connector. It's important to note

how the connectors have been arranged to minimize the number of vias in the PCB.

Passive components have been chosen with 0402 package, which is the smallest package

which could be hand assembled without using industrial procedures. LEDs are instead

0805 packaged, so that they are clearly visible by the user. Capacitors C1 and C2, as

usual, are tantalum capacitors in package A.

Figure 9.2: Femtoduino PCB design and picture

130

9.3 A libre hardware: media coverage and commercial productions

9.3 A libre hardware: media coverage and commercial

productions

I published the designs of Femtoduino on my personal website undera libre license (CC-

BY-SA), including KiCAD schematics, PCB designs, Gerbers and the bill of materials

for building it. This is everything needed for building a complete and functioning

Femtoduino. This generated quite some interest on the project as the need for really

small prototyping seems to be considerable.

Femtoduino has been featured on many technical websites, most notably on the o�cial

Arduino blog and on Hackaday, a globally known website for electronics hobbyists.

Femtoduino is currently one of the most popular board in the Dorkbot PDX group

PCB order.

Femtoduino also generated a lot of interest as a commercial project andthere are now

at least three companies in process of building mass produced Femtoduinos.

The interest generated by Femtoduino should be a good indicator of it's quality in the

design and project idea.

131

9. FEMTODUINO

132

10

Conclusions

During this thesis I experienced with electronics, Arduino, MEMS sensors and orien-

tation sensing algorithms to produce a prototype of a tangible user interface called

Palla.

Thanks to the work done in this thesis, I learned many new things for which I never

received an education. With a computer science background, I never received education

on electronics and printed circuit boards design but, as proven by the projects created,

the knowledge gained on such topics is quite relevant.

Arduino, its programming APIs and the practical implementation issues are now well

known for me. Currently, I'm also intimate with MEMS accelerometers, gyroscopes

and magnetometers and I've been able to design PCB as well as implement practical

applications for them.

I discovered some of the theoretical and practical issues of designinga tangible user

interface prototype with focus on orientation sensing.

10.1 Future Works

This thesis open the way to many possible future developments mainly related to im-

provement in the orientation sensing approach and practical usages of FreeIMU and

Femtoduino.

133

10. CONCLUSIONS

10.1.1 Orientation Sensing

Regarding the orientation sensing algorithms presented there is still much to be done on

the topic of calibration of the sensors. As the precision needed by my prototypes didn't

had to be very accurate, a slightly lazy approach on calibration has been implemented:

basically the calibration is done simply using the internal self test features of the sensors.

However, for a more accurate orientation estimation the sensors should becalibrated

using a more detailed approach. Good examples on calibration procedures for the

devices could be (30, 38, 62). (38) is extremely of interest as, behind thecalibration

suggestions, there are also pointers on how to compensate for sensors misalignment.

The market of MEMS sensors is extremely active. As those kind of sensors are being

added to handheld devices, possibly generating sells in huge numbers, there is a con-

stant push on competition between the various producers which makesresearch and

improvement on the sensors extensive. There are already sensors which looks more

powerful than those used on FreeIMU (eg: MPU6050, LSM303DLH). Further works

and developments should evaluate the various new sensors on the market.

10.1.2 FreeIMU

FreeIMU has proven to be a great prototype tool for orientation sensing devices. How-

ever, there are many possible usages of FreeIMU, both in the commercial and research

�elds. Personally, I'm very interested in human tracking and I'd l ike to continue the

work done with FreeIMU to implement some kind of full body immersion into virtual

reality. There are research projects already working on these topics(eg (50)) but I'm

extremely interested on working on something like this.

10.1.3 Palla and Femtoduino

In this thesis I developed a prototype of Palla which works and looks interesting in many

di�erent applications. However, there hasn't been any serious e�ort into developing a

complete application based on Palla. Such development would be surely great for

testing the quality of user experience when using Palla. Contacts with Telecom Italia

134

10.2 Acknowledgments

Lab, research division of Telecom Italia, proposed the usage of a controller similar to

Palla into a three dimensional user interface for digital television. This is surely a �eld

which could greatly make use of Palla.

The design of Femtoduino has been designed for size constrained applications. However,

even if successfully tested Femtoduino and used it on a couple of draft prototypes, a

practical usage of Femtoduino still has to be done. This little Arduino compatible board

opens many very interesting research possibilities. I think that it can be extremely

useful in many research �elds, for example ubiquitous computing, robotics, HCI, etc.

I'm sure that if the project gains enough fame it will be slowly enter into many research

labs as Arduino already did.

10.2 Acknowledgments

I'd like to thank my supervisor, Prof. Luca Console, for his guidance during the various

steps of this thesis and for giving me the opportunity to work with him. I also would

like to thank Prof. Marco Grangetto, for his enlightening review on this thesis and the

whole project.

I also would like to thank Fabiana Vernero and Rossana Simeoni for following my work

closely and for their smart suggestions. Of course, I'd like to thank the Univesit�a degli

Studi di Torino for providing me some of the tools widely used in this thesis.

I'd like to thank the Arduino community for helping me in my �rst st eps with this

thesis, and the Dorkbot PDX community, especially James Neal, for their help in the

printed circuit boards design and production. I also would like to thank Sebastian O.H.

Madgwick for his wonderful orientation sensing algorithm and for the personal help I

received from him on a couple of problems encountered.

Finally, I'd like to thank my family for staying close to me even in t he most di�cult

days and for always been of encouragement to me. I thank my girlfriend Arianna for

her encouragement and support and for her great pasta amatriciana.

I'd like to thank my grandparents Pierino and Riccardo for teaching me how to be a

good person.

135

10. CONCLUSIONS

136

References

[1] Grant Baldwin, Robert Mahony, Jochen Trumpf, Tarek
Hamel, and Thibault Cheviron . Complementary �lter
design on the Special Euclidean group SE(3) . 107

[2] Massimo Banzi . Getting Started with Arduino . O'Reilly,
2009. 13, 17

[3] Tamara Bratland, Michael J. Caruso, Robert W.
Schneider, and Carl H. Smith . A New Perspec-
tive on Magnetic Field Sensing . Available from:
http://www.sensorsmag.com/sensors/electric-magnetic /
a-new-perspective-magnetic-field-sensing-855 . 77

[4] Omar Cafini, Elisabetta Farella, Luca Benini, Stefano
Baraldi, Nicola Torpei, Lea Landucci, and Alberto
Del Bimbo . Tangerine SMCube: a smart device for
human computer interaction . In Proc. of IEEE Eu-
ropean Conference on Smart Sensing and Context . IEEE
Computer Society, 2008. Available from: http://www.
micc.unifi.it/publications/2008/CFBBTLD08 . 121

[5] Omar Cafini, Piero Zappi, Elisabetta Farella, Luca Benini,
Stefano Baraldi, Nicola Torpei, Lea Landucci, and Al-
berto Del Bimbo . Evolving TUIs with Smart Ob-
jects for Multi-context Interaction . In Proc. of In-
ternational Conference on Computer-Human Interaction
(CHI) , Florence, Italy, April 2008. ACM, ACM Press.
Available from: http://www.micc.unifi.it/publications/
2008/CZFBBTLD08. 121

[6] Michael J. Caruso, Tamara Bratland, Dr. Carl H.
Smith, and Robert Schneider . A New Per-
spective on Magnetic Field Sensing . Avail-
able from: http://www51.honeywell.com/aero/common/
documents/myaerospacecatalog-documents/Defense_
Brochures-documents/Magnetic__Literature_Technical_
Article-documents/A_New_Perspective_on_Magnetic_Fie ld_
Sensing.pdf . 75

[7] M.J. Caruso . Applications of magnetic sensors for
low cost compass systems . In Position Location and
Navigation Symposium, IEEE , 2000. Available from:
http://hnc.ru/lib/a%26c%20%28automatic%20%26%20cont rols%
29/sensors/DataSheet/Magnit/Honeywell/lowcost.pdf . 106

[8] Reston Condit . AN905: Brushed DC Motor Fun-
damentals . Available from: http://ww1.microchip.com/
downloads/en/AppNotes/00905a.pdf . 123

[9] Analog Devices . ADXL330 Accelerometer
Datasheet . Available from: http://www.analog.com/
static/imported-files/data_sheets/ADXL330.pdf . 77, 78

[10] Analog Devices . ADXL345 datasheet . Available
from: http://www.analog.com/static/imported-files/data_
sheets/ADXL345.pdf . 93

[11] Sparkfun Electronics . Bluetooth Mate Gold . Avail-
able from: http://www.sparkfun.com/products/9358 . 123

[12] Sparkfun Electronics . Triple Axis Accelerometer
Breakout - ADXL330 . Available from: http://www.
sparkfun.com/products/692 . 78, 79

[13] Mark Euston, Paul Coote, Robert Mahony, Jonghyuk Kim,
and Tarek Hamel . A Complementary Filter for At-
titude Estimation of a Fixed-Wing UAV . 107

[14] Mark Fiala . The SQUASH 1000 Tangible User In-
terface System . Mixed and Augmented Reality, IEEE /
ACM International Symposium on , 0 :180{181, 2005. 121

[15] Christopher J. Fisher . AN1057: Using an Ac-
celerometer for Inclination Sensing . Avail-
able from: http://www.analog.com/static/imported-files/
application_notes/AN-1057.pdf . 100

[16] Randolph Fritz, Chih-Pin Hsiao, and Brian R. Johnson .
Gizmo and WiiView: Tangible User Interfaces
Enabling Architectural Presentations . Available
from: http://dmg.caup.washington.edu/pdfs/ACADIA09.Giz.
Wii.pdf . 122

[17] Bernd Fr •ohlich and John Plate . The cubic mouse: a
new device for three-dimensional input . In Pro-
ceedings of the SIGCHI conference on Human factors in
computing systems , CHI '00, pages 526{531, New York,
NY, USA, 2000. ACM. Available from: http://doi.acm.
org/10.1145/332040.332491 . 121, 122

[18] CadSoft Computer GmbH . EAGLE PCB design tool
homepage . Available from: http://www.cadsoftusa.com/
index.htm . 87

[19] Dr. Andrew Greensted . Switch Debouncing . Avail-
able from: http://www.labbookpages.co.uk/electronics/
debounce.html . 41

[20] H. Hauser, G. Stangl, W. Fallmann, R. Chabicovsky,
and K. Riedling . Magnetoresistive Sensors . Avail-
able from: http://www.iemw.tuwien.ac.at/publication/
workshop0600/Hauser.html . 77

[21] Honeywell . HMC5843 datasheet . Available from:
http://www.sparkfun.com/datasheets/Sensors/Magneto/
HMC5843.pdf. 96

[22] Honeywell . Magnetic Sensors Overview . Avail-
able from: http://www51.honeywell.com/aero/common/
documents/myaerospacecatalog-documents/Defense_
Brochures-documents/Magnetic__Literature_Applicatio n_
notes-documents/Magnetic_Sensor_Overview.pdf . 76, 77

[23] Invensense . ITG-3200 - Product Speci�ca-
tion Revision 1.4 (datasheet) . Available
from: http://invensense.com/mems/gyro/documents/
PS-ITG-3200-00-01.4.pdf . 84, 85, 93, 94, 95

[24] Jean-Marc Irazabal and Steve Blozis . AN10216: I2C
Manual . Philips Semiconductors . Available from: http:
//www.nxp.com/documents/application_note/AN10216.pd f . 84

137

REFERENCES

[25] Matthias Kranz, Dominik Schmidt, Paul Holleis, and Al-
brecht Schmidt . A Display Cube as Tangible User
Interface . In Adjunct Proceedings of UbiComp 2005
(Poster and Demo) , September 2005. 122

[26] Adam Kumpf . Trackmate: Large-Scale Accessibility of Tan-
gible User Interfaces . Massachusetts Institute of Technol-
ogy, 2009. 121

[27] Tony R. Kuphaldt . Lessons In Electric Circuits, volume I
- DC . 2006. 5, 45

[28] OpenLearn LearningSpace . A problem with sen-
sors . Available from: http://openlearn.open.ac.uk/mod/
oucontent/view.php?id=397841§ion=6 . 72

[29] MakingThings LLC . Introduction to Electronics .
Available from: http://www.makingthings.com/teleo/
products/documentation/teleo_user_guide/electronics .
html . 6

[30] Sebastian O.H. Madgwick . Automated calibration
of an accelerometers, magnetometers and gy-
roscopes - A feasibility study . Available from:
http://www.x-io.co.uk/res/doc/automated_calibration _
of_an_accelerometers_magnetometers_and_gyroscopes_a _
feasibility_study.pdf . 134

[31] Sebastian O.H. Madgwick . An e�cient orientation
�lter for inertial and inertial/magnetic sensor
arrays . Available from: http://www.x-io.co.uk/res/
doc/an_efficient_orientation_filter_for_inertial_an d_
inertialmagnetic_sensor_arrays.pdf . 107, 108, 110

[32] Sebastian O.H. Madgwick . Quaternions . Available from:
http://www.x-io.co.uk/res/doc/quaternions.pdf . 107, 108

[33] Robert Mahony, Sung-Han Cha, and Tarek Hamel . A cou-
pled estimation and control analysis for attitude
stabilisation of mini aerial vehicles. 107

[34] Robert Mahony, Tarek Hamel, and Jean-Michel Pflimin .
Nonlinear Complementary Filters on the Special
Orthogonal Group . In IEEE TRANSACTIONS ON
AUTOMATIC CONTROL, VOL. 53, NO. 5, JUNE 2008 .
107

[35] Howard Mason . Basic Introduction to the use
of Magnetoresistive Sensors . Available from:
http://www.diodes.com/_files/products_appnote_pdfs/
zetex/an37.pdf . 77

[36] Inc. Micrel . MIC5205 Datasheet . Available from:
http://www.micrel.com/_PDF/mic5205.pdf . 116

[37] ST Microelectronics . AN3182: Tilt measuring
using a low-g 3-axis accelerometer . Available from:
http://www.st.com/internet/com/TECHNICAL_RESOURCES/
TECHNICAL_LITERATURE/APPLICATION_NOTE/CD00268887.pdf .
82, 99, 101

[38] ST Microelectronics . AN3192: Using LSM303DLH
for a tilt compensated electronic compass .
Available from: http://www.st.com/stonline/products/
literature/an/17353.pdf . 134

[39] Hack N Mod . How to: Reow Sur-
face Mount (SMD) Soldering Tuto-
rial . Available from: http://hacknmod.com/hack/
diy-reflow-surface-mount-soldering-smd-tutorial/ .
90

[40] J. Neamu, W. Kappel, V. Alecu, and A. Patroi . De-
sign And Fabrication Of Anisotropic Magnetore-
sistive Microsensor On Oxidized Silicon Wafer .
Journal of Optoelectronics and Advanced Materials Vol.
6, No. 3, September 2004, p. 983 - 986 . Available from:
http://www.inoe.ro/JOAM/pdf6_3/Neamtu.pdf . 77

[41] Rob O'Reilly, Kieran Harney, and Alex Khenkin . Sonic
Nirvana: MEMS Accelerometers as Acoustic
Pickups in Musical Instruments . Available from:
http://goo.gl/I5zHU . 79

[42] J. Patten, H. Ishii, J. Hines, and G. Pangaro . Sensetable:
A Wireless Object Tracking Platform for Tangi-
ble User Interfaces . In CHI '01: Proceedings of the
SIGCHI conference on Human factors in computing sys-
tems , pages 253{260, New York, NY, USA, 2001. ACM.
Available from: http://dx.doi.org/10.1145/365024.365112 .
121

[43] Edward Pervin and Jon A. Webb . Quaternions in Com-
puter Vision and Robotics . 107

[44] William Premerlani and Paul Bizard . Direction Cosine
Matrix IMU: Theory . 107

[45] Processing . Processing programming language
website . Available from: http://processing.org/ . 24

[46] Arduino API Reference . analogWrite . Available from:
http://arduino.cc/en/Reference/AnalogWrite . 20, 24

[47] Arduino API Reference . pinMode . Available from:
http://arduino.cc/en/Reference/pinMode . 38

[48] Arduino API Reference . pinMode . Available from:
http://arduino.cc/en/Reference/Serial . 57

[49] Arduino API Reference . Wire Library . Available from:
http://www.arduino.cc/en/Reference/Wire . 85

[50] Daniel Roetenberg . Inertial and Magnetic Sensing of Hu-
man Motion . Universiteit Twente, 2006. 69, 134

[51] David Sachs . Sensor Fusion on Android Devices: A
Revolution in Motion Processing . Available from:
http://www.youtube.com/watch?v=C7JQ7Rpwn2k .

[52] NXP Semiconductors . PCA9306 Datasheet . Available
from: http://www.nxp.com/documents/data_sheet/PCA9306.
pdf . 116, 122

[53] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar .
Robot Modeling and Control . John Wiley & Sons, Inc.,
2006.

[54] Richard Stallman . Why Open Source misses the
point of Free Software . Available from: http://www.
gnu.org/philosophy/open-source-misses-the-point.htm l . 13

[55] Starlino . Arduino code for simpli�ed Kalman �l-
ter. Using a 5DOF IMU (accelerometer and gy-
roscope combo) . Available from: http://www.starlino.
com/imu_kalman_arduino.html . 102

[56] Starlino . DIY Surface Mount on a Budget { Com-
plete Walkthrough from PCB etching to Reow .
Available from: http://www.starlino.com/surface_mount_
reflow.html . 89, 90

138

REFERENCES

[57] Starlino . A Guide To using IMU (Accelerome-
ter and Gyroscope Devices) in Embedded Appli-
cations . Available from: http://www.starlino.com/imu_
guide.html . 102, 103

[58] GNU Operating System . The Free Software De�-
nition . Available from: http://www.gnu.org/philosophy/
free-sw.html . 13

[59] Hani Tawfik . A Glimpse at MEMS . Available from:
http://knol.google.com/k/a-glimpse-at-mems . 74, 75

[60] KiCad Team . KiCad PCB design tool homepage .
Available from: http://kicad.sourceforge.net/wiki/Main_
Page. 87, 88

[61] ThinkQuest Team . Electronics: An online guide for
beginners . Available from: http://library.thinkquest.
org/16497/intro/index.html . 6

[62] J. F. Vasconcelos, G. Elkaim, C. Silvestre, P. Oliveira, and
B. Cardeira . A Geometric Approach to Strapdown
Magnetometer Calibration in Sensor Frame . 2008.
134

[63] Salvatore A. Vittorio . MicroElectroMechanical Sys-
tems (MEMS) . Available from: http://www.csa.com/
discoveryguides/mems/overview.php . 67

[64] Wikipedia . Accelerometer . Available from: http:
//en.wikipedia.org/wiki/Accelerometer . 68

[65] Wikipedia . atan2 . Available from: http://en.wikipedia.
org/wiki/Atan2 . 104

[66] Wikipedia . Capacitor . Available from: http://en.
wikipedia.org/wiki/Capacitor . 7

[67] Wikipedia . Gyroscope . Available from: http://en.
wikipedia.org/wiki/Gyroscope . 73

[68] Wikipedia . I2C . Available from: http://en.wikipedia.
org/wiki/I%C2%B2C. 83

[69] Wikipedia . Kirchho� 's circuit laws . Avail-
able from: http://en.wikipedia.org/wiki/Kirchhoff%27s_
circuit_laws . 9, 10

[70] Wikipedia . Light-emitting diode . Available from:
http://en.wikipedia.org/wiki/Light-emitting_diode . 28

[71] Wikipedia . Magic number - programming . Avail-
able from: http://en.wikipedia.org/wiki/Magic_number_
(programming) . 32

[72] Wikipedia . Magnetometer . Available from: http:
//en.wikipedia.org/wiki/Magnetometer . 75

[73] Wikipedia . Magnetoresistance . Available from: http:
//en.wikipedia.org/wiki/Magnetoresistance . 75

[74] Wikipedia . Ohm's law . Available from: http://en.
wikipedia.org/wiki/Ohm%27s_law . 7

[75] Wikipedia . Proper acceleration . Available from: http:
//en.wikipedia.org/wiki/Proper_acceleration . 68

[76] Wikipedia . Series and parallel circuits . Available
from: http://en.wikipedia.org/wiki/Series_and_parallel_
circuits . 10, 12

[77] Prof. Fabian Winkler . Envision Art 01: the respon-
sive screen . 2007. Available from: http://web.ics.
purdue.edu/~fwinkler/590E/index.html . 14

139

